Final

## First Five-Year Review for Chevron Chemical Company Site, Orlando, Florida



## Prepared for:

United States Environmental Protection Agency Region IV Atlanta, Georgia

March 21, 2003

# Second Work · creative thinkin

#### **Executive Summary**

The remedy for the Chevron Chemical Company Site in Orlando, Florida included excavation and off-site disposal of soils, installation of fencing, implementation of institutional controls, and monitored natural attenuation of groundwater. Soil remediation actions began in February 1992 and were completed by April 1994. A final construction and Remedial Action Report Amendment for the soil removal activities was completed in July 1994, and approved by the Environmental Protection Agency (EPA) in 1996. Monitored Natural Attenuation (MNA) was selected as the remedy for contaminated groundwater on the site in the Record of Decision (ROD) issued by the EPA to Chevron on May 22, 1996. The triggering action for this statutory review is the initiation of the remedial action in July 1997.

The assessment of this five-year review found that the remedy has been performed in accordance with the requirements of the ROD and is functioning as designed. The immediate threats have been addressed and the remedy is expected to be protective when groundwater cleanup goals are achieved through monitored natural attenuation.

|                                                  | Five-Year Revi                            | iew Summary Form                                              |
|--------------------------------------------------|-------------------------------------------|---------------------------------------------------------------|
|                                                  | SITE                                      | EIDENTIFICATION                                               |
| Site name (from Was                              | steLAN): Chevron Chen                     | nicel Company                                                 |
| EPA ID (from Wastel                              | LAN): 1530/07-042                         |                                                               |
| Region:                                          | State: FL                                 | City/County: Orlando/Orange                                   |
|                                                  |                                           | SITE STATUS                                                   |
| NPL status: <u>Fi</u> i                          | nal Deleted (                             | Other(specify):                                               |
| Remediation status (                             | choose all that apply):                   | Under construction Complete                                   |
| Multiple Ous*? Yes                               | Construction                              | completion date:                                              |
| Has site been put int                            | o reuse? Yes                              |                                                               |
|                                                  | R                                         | FVIEW STATUS                                                  |
| Lead agency:                                     | State Tribe O                             | ther Federal agency:                                          |
| Author name: Andy                                | Davis                                     |                                                               |
| Author title: Director<br>Geomega Consultan      |                                           | Author affiliation: PRP                                       |
| Review period:** 9                               | 3/3/2002 – 12/15/2002                     |                                                               |
| Date(s) of site inspec                           | otion: 4/20/2002, 9/3/20                  | 02                                                            |
| Type of review:                                  | Non-NPL Remedial A<br>Regional Discretion | Pre-SARA NPL-Removal Only Action Site NPL-State/Tribe-lead    |
| Review number:                                   | 2(second) 3                               | S(third) Other(specify)                                       |
| Actual RA On<br>Construction (<br>Other (specify |                                           | #1 Actual RA Start at OU#<br>Previous Five-Year Review Report |
| Triggering action dat                            | e (from WasteLAN): Ju                     | ly 1997                                                       |
| D 1                                              | after triggering action da                | ite): December 2002                                           |

Wastel AN

#### Five-Year Review Summary Form, cont'd

Issues:

The efficacy of the monitored natural attenuation remedy requires future verification until ROD compliance has been attained.

Recommendations and Follow-up Actions:

Monitored natural attenuation sampling - reduce frequency of or eliminate some analyses. COC analysis should continue annually at MW-1S and MW-1D. Synoptic Spring and Fall monitoring rounds should be conducted in 2004 and 2006 prior to the next five-year review.

Protectiveness Statement(s):

The remedy is expected to be protective of human health and the environment upon attainment of groundwater cleanup goals, through natural attenuation. In the interim, exposure pathways that could result in unacceptable risks are being controlled and institutional controls are preventing exposure to, or the ingestion of, groundwater. All threats at the site have been addressed through excavation of soil, installation of fencing, and implementation of institutional controls. Long-term protectiveness of the remedial action will be verified by sampling of on- and off-site monitoring wells according to the recommended sampling and analytical plan. Current monitoring data indicated that the remedy is protective of human health and the environment.

Other comments:

None.

Winston A. Smith

Director, Waste Management Division

Date

| 1 | lnt                 | roduction                                              | 1              |
|---|---------------------|--------------------------------------------------------|----------------|
| 2 | Site                | e Chronology                                           | 1              |
| 3 | Bac                 | ekground                                               | 2              |
|   | 3.1                 | Physical Characteristics                               | 2              |
|   | 3.2                 | Land and Resource Use                                  | 2              |
|   | 3.3                 | History of Contamination                               | 3              |
|   | 3.4                 | Initial Response                                       |                |
|   | 3.5                 | Basis for Taking Action                                |                |
| 4 | Rer                 | medial Actions                                         | 8              |
|   |                     |                                                        |                |
|   | 4.7                 | Remedy Selection                                       |                |
|   | 4.2                 | Remedy Implementation.                                 |                |
|   | 4.3                 | Groundwater Monitoring/Operation and Maintenance (O&M) |                |
|   | 4.3.                |                                                        |                |
|   | 4.3.<br>4.3.        | •                                                      |                |
|   | 4.3.<br>4.3.        |                                                        |                |
|   | 4.3.                |                                                        |                |
|   |                     | •                                                      |                |
| 5 | Pro                 | gress Since the Last Five-Year Review                  | 13             |
| 6 | Five                | e-Year Review Process                                  | 13             |
|   | 6.1                 | Administrative Components                              | 13             |
|   | 6.2                 | Community Involvement                                  |                |
|   |                     | Document Review                                        |                |
|   | 6.3                 |                                                        |                |
|   | 6.4                 | Data Review                                            |                |
|   | 6.4.                |                                                        |                |
|   | 6.4.                |                                                        |                |
|   | 6.4.                |                                                        |                |
|   | 6.4.                |                                                        |                |
|   | 6.5                 | Site Inspection                                        |                |
|   | 6.5.                |                                                        |                |
|   | 6.5.                |                                                        |                |
|   | 6,5.                |                                                        | 24             |
|   |                     |                                                        | 24<br>25       |
| 7 | 6.5.                |                                                        | 24<br>25       |
|   | 6.5.                |                                                        | 24<br>25<br>25 |
| 8 | 6.5.<br>Tec         | 4 Overall Observations                                 | 24<br>25<br>25 |
| 8 | 6.5.<br>Tec<br>Issu | 4 Overall Observations                                 | 24<br>25<br>25 |

| Chev | Chevron - Orlando - Final Five Year Review 3/2                                |      |
|------|-------------------------------------------------------------------------------|------|
| 10   | Protectiveness Statement                                                      |      |
| 11   | Next Review                                                                   | 28   |
| 12   | References                                                                    | 29   |
|      |                                                                               |      |
| Appe | endix A - Fall 2002 Groundwater Sampling Report, Chevron Orlando, Florida S   | ite  |
| Appe | endix B – Summary of COC Analyses, Chevron Orlando, Florida Site              |      |
| Арре | endix C - Depth to Water versus Concentration at the Chevron Orlando, Florida | Site |

Appendix D – SunLabs Data Sheets for the Fall 2002 Monitoring Event

#### **List of Tables**

| n 1         | Changle as of Change Orlanda site asserts                         |
|-------------|-------------------------------------------------------------------|
| 2-1         | Chronology of Chevron Orlando site events                         |
| 4-1         | Sampling and analytical plan summary for the Chevron Orlando Site |
|             | (1997 – 2002)                                                     |
| <b>6</b> -1 | Pesticide concentrations in soils at Chevron Orlando, Florida     |
| 6-2         | On-site soil performance standards                                |
| 6-3         | Off-site soil performance standards                               |
| 6-4         | Natural attenuation score sheet                                   |
| 9-1         | Sampling and analytical plan summary for the Chevron Orlando Site |
|             | (2 <sup>nd</sup> Five-Year Review Period)                         |

## **List of Figures**

| 3-1  | Chevron Orlando, Florida project location map                                                                            |
|------|--------------------------------------------------------------------------------------------------------------------------|
| 3-2  | Basemap of Chevron Orlando, Florida, site boundary, approximate excavation surface, and monitoring well locations        |
| 3-3  | Surface soil chlordane concentrations in Armstrong Trailer Park, Orlando, Florida                                        |
| 6-1  | Chlordane soil concentrations (depth 0-1 feet)                                                                           |
| 6-2  | Chlordane soil concentrations (depth 1-2 feet)                                                                           |
| 6-3  | Chlordane soil concentrations (depth > 2 feet)                                                                           |
| 6-4  | Surface soil chlordane concentrations in Armstrong Trailer Park, Orlando, Florida                                        |
| 6-5  | Basemap of Chevron Orlando, Florida, site boundary, approximate excavation surface, and monitoring well locations        |
| 6-6  | $\alpha$ -BHC, $\beta$ -BHC, and $\delta$ -BHC groundwater concentrations for MW-4D at the Chevron Orlando, Florida site |
| 6-7  | Average depth to water vs. average BHC concentrations at Chevron Orlando, Florida                                        |
| 6-8  | Average depth to water vs. average BTEX concentrations at Chevron Orlando, Florida                                       |
| 6-9  | Average total BHC concentrations at consistent water level elevations at the Chevron Orlando, Florida site               |
| 6-10 | Average total ethylbenzene concentrations at consistent water level elevations at the Chevron Orlando, Florida site      |
| 6-11 | Average total xylene concentrations at consistent water level elevations at the Chevron Orlando, Florida site            |
| 6-12 | Temporal BTEX and BHC trends in MW-2D                                                                                    |
| 6-13 | Temporal BTEX and BHC trends in MW-4D                                                                                    |
| 6-14 | Spatial distribution of total BHCs in groundwater, Chevron Orlando                                                       |
| 6-15 | β- BHC cross-sectional groundwater concentrations at the Chevron Orlando, Florida site                                   |
| 6-16 | Xylene cross-sectional groundwater concentrations at the Chevron Orlando, Florida site                                   |
| 6-17 | Total BHC mass in Chevron Orlando Florida site groundwater                                                               |
| 6-18 | Depth to water vs. concentration at Chevron Orlando, Florida October 2001                                                |
| 6-19 | Center of mass of xylene in groundwater at the Chevron Orlando, Florida site                                             |
| 6-20 | Bacterial degradation pathways for DDT                                                                                   |
| 6-21 | Generalized BHC degradation pathways                                                                                     |
| 6-22 | Generalized xylene degradation pathways                                                                                  |
| 8-1  | Soil and groundwater method detection limits vs. numerical clean-up                                                      |
|      | standards for α-BHC in equilibrium                                                                                       |

#### List of Acronyms

AOC Action Order of Consent

ARARs Applicable or Relevant and Appropriate Requirements
ATSDR Agency for Toxic Substances and Disease Registry

BCC Brown and Caldwell Consultants

BHC Benzene Hexachloride

y BHC Lindane

BRA Baseline Risk Assessment

BTEX Benzene, Toluene, Ethylbenzene, Xylene

CCC Chevron Chemical Company
COC Constituent of Concern
DBP p-p-dichlorobenzophenone
DDA bis(p-chlorophenyl)acetic Acid

DDD 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane
DDT 1,1-trichloro-2,2-bis(p-chlorophenyl)ethane

EPA Environmental Protection Agency
EVS Environmental Visualization System

FDEP Florida Department of Environmental Protection

Granular Activated Carbon GAC HDEP High Density Polyethylene MCL Maximum Contaminant Level MDL Method Detection Limit MNA Monitored Natural Attenuation MTBE Methyl Tertiary-Butyl Ether NCP National Contingency Plan National Priorities List NPL. Operations & Maintenance O&M

OSWER Office of Solid Waste and Emergency Response

OU Operable Unit

PCCH Pantachlorocyclohexene PQL Practical Quantitation Limit

RfD Reference Dose

PRG Preliminary Remediation Goal
RAO Remedial Action Objectives
RD/RA Remedial Design / Remedial Action

RD/RA Remedial Design / Remedial Action
RI/FS Remedial Investigation/Feasibility Study

ROD Record of Decision

RPM Remedial Project Manager

SACM Superfund Accelerated Cleanup Model

TBC To be Considered TEQ Toxicity Equivalent

UAO Unilateral Administrative Order

#### 1 Introduction

The purpose of the five-year review is to determine whether the remedy at the site is protective of human health and the environment. The methods, findings, and conclusions of previous investigations and groundwater monitoring reports are documented in this Five-Year Review report. In addition, this Five-Year Review report identifies issues found during the review, and presents recommended actions to address them. This Five-Year Review report is prepared pursuant to CERCLA §121 and the National Contingency Plan (NCP). CERCLA §121 states:

If the President selects a remedial action that results in any hazardous substances, pollutants, or contaminants remaining at the site, the President shall review such remedial action no less often than each five years after the initiation of such remedial action to assure that human health and the environment are being protected by the remedial action being implemented. In addition, if upon such review it is the judgment of the President that action is appropriate at such site in accordance with section [104] or [106], the President shall take or require such action. The President shall report to the Congress a list of facilities for which such review is required, the results of all such reviews, and any actions taken as a result of such reviews.

This requirement is interpreted further in the NCP; 40 CFR §300.430(f)(4)(ii) states:

If a remedial action is selected that results in hazardous substances, pollutants, or contaminants remaining at the site above levels that allow for unlimited use and unrestricted exposure, the lead agency shall review such action no less often than every five years after the initiation of the selected remedial action.

This five-year review addresses the remedy implemented at the Chevron Chemical Company Site in Orlando, Florida. This review was conducted from September through December 2002. The review was conducted by the United States Environmental Protection Agency (EPA), Region IV, with contributions from Geomega Incorporated and TASK Environmental, Inc. The Florida Department of Environmental Protection (FDEP) provided input during a 5-year review meeting held in Wakulla Springs, Florida on November 20, 2002. This report documents the results of the review.

This is the first five-year review for the Chevron Chemical Company Site located in Orlando, Florida. The triggering action for this statutory review was the initiation of the remedial actions in July 1997 as dictated in the Record of Decision (ROD). The five-year review is required because contaminants remain in the groundwater at the site above levels that allow for unlimited use of the site and unrestricted exposure.

## 2 Site Chronology

Table 2-1 presents a chronology of the Chevron Orlando site events.

## 3 Background

#### 3.1 Physical Characteristics

The Chevron Chemical Company (CCC) Orlando Site is located in Orange County, Florida at 3100 North Orange Blossom Trail (U.S. Highway 441) in the city of Orlando, Florida [Township 22 S, Range 29 E, Section 15] (Figure 3-1). The site covers 4.39 acres of cleared, relatively flat terrain with grassy vegetation, and trees along the northeast perimeter. The site is currently unoccupied and fenced to discourage access. There are no permanent structures currently on the site. An aluminum utility shed and two HDPE containers are on-site for the collection of purge water for treatment and disposal during groundwater monitoring events.

The Orlando site is bordered on the east by Orange Blossom Trail (U.S. Highway 441) and the south by active railroad tracks operated by CSX (Figure 3-2). The land use in the areas to the south and west of the site is light industrial, historically including two construction companies with underground storage tanks, two gasoline service stations with underground storage tanks, a door and trim manufacturing company, and a lumber company. Industrial land use to the north and east includes a seed company and the Fairview Commerce Park. Two residential mobile home parks, the Armstrong Trailer Park and 441 Trailer Park, are north of the site (Figure 3-2).

The Lake Fairview Commerce Center is located across the highway from the eastern portion of the site. Lake Fairview, a 400-acre remnant karst lake, is located approximately 700 feet northeast of the site (Figure 3-2). The water level in the lake is maintained at an elevation (87.4 feet above mean sea level [amsl]) below the ambient groundwater level by a drainage well located on its northwest side.

The site is underlain by a surficial aquifer and the deeper Floridan aquifer. The surficial aquifer occurs within undifferentiated sediments of Pleistocene age and is encountered at a depth of 10 feet or less at the site. The saturated thickness of this aquifer at the site is 17 to 20 feet. Groundwater flow in the surficial aquifer is northeast toward Lake Fairview; the gradient is approximately 0.006 feet/feet. The Floridan aquifer is encountered at a depth of approximately 70 feet at the site. It occurs within the following formations, in descending order, the Miocene age Hawthorn Group (50 to 300 feet thick), the Ocala limestone (0-125 feet thick), the Avon Park limestone (400 to 600 feet thick), and the Eocene-age Lake City limestone (over 700 feet thick). The sedimentary deposits overlying the crystalline basement in Orange County are approximately 6,500 feet thick.

#### 3.2 Land and Resource Use

The Chevron Orlando site is a former pesticide and nutritional spray-formulating plant that was owned and operated by CCC from 1950 to 1978. In 1978, Mr. Robert Uttal purchased the property and operated a truck sales and service company on the property. Mr. Uttal discontinued the operation of the truck sales and service facility in 1986, and in 1987 leased the property for vehicle storage. Operations at the site ceased in 1991. Chevron purchased the property in foreclosure from First Union Bank and the Resolution

Trust Company in 1993 and 1994, respectively. Chevron is the current site owner and conducts the site environmental monitoring.

The site is currently unoccupied and fenced to discourage access. The site is not currently in use and the groundwater in the surficial aquifer underlying the site is currently not used as a source of drinking water. Future land use at the site is expected to be commercial or industrial. A deed restriction has been implemented to prevent residential development of the site.

#### 3.3 History of Contamination

#### Chevron Chemical Company

In 1950, CCC purchased the 4.39 acre Orlando site and constructed a pesticide formulation plant, which it operated through 1976. From 1950 through 1976, the facility received unblended products in bulk liquid and powder form, and combined the products to formulate pesticides and nutritional sprays for bulk wholesale distribution. The unblended products were delivered primarily by rail, with drum-packaged formulated products removed by truck (TASK/PTI 1994b).

Parathion, chlordane, phaltan, captan, malathion, and paraquat were the primary products formulated at the site. 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT), difolatan, lindane, dieldrin, aldrin, dibromamine, and aqueous solutions of copper, zinc, manganese, sulfur, and boron (nutritional sprays) were also produced. Chemical carriers and solvents used in pesticide formulation included xylene, kerosene, mineral oil, mineral spirits, ethylbenzene, and aromatic naptha (TASK/PTI 1994a).

Rinsate ponds were used for the collection and disposal of stormwater, pesticide formulating rinse water, drum rinse water, and floor wash-down water. Two site buildings, an office building and a warehouse, were constructed on concrete pads. Chevron discontinued the formulation of pesticides in 1976. The rinsate ponds were backfilled with soil prior to sale of the site.

#### Central Florida Mack Trucks

In 1978, Mr. Robert Uttal purchased the property and began to operate Central Florida Mack Trucks, a truck saies and service company. Mr. Uttal retained ownership of the site until 1993. Mr. Uttal removed the remaining pesticide formulation equipment and all but one of the above-ground storage tanks. The interior of the warehouse was then washed with soap and water to remove any remaining pesticides. The floor was also rinsed with mineral spirits that were reportedly discharged to the ground surface in the area of the rinsate ponds. After cleaning the warehouse, Mr. Uttal constructed four service bays for truck repair and service and reportedly filled the underground storage tank with concrete.

Central Florida Mack Trucks repaired and serviced diesel engine trucks. Body work and painting were also conducted at the site. The facility generated waste oil and waste degreasing solvent (from the engine and parts cleaning operation). A waste oil trough

was located along the railroad spur on the southwestern side of the site. Used oil filters, waste oil, diesel fuel, paint, and partially filled drums of powdered pesticides were discovered in the rinsate pond area during the first Removal Action, along with discarded truck parts and debris. The collocation of these materials demonstrates that they were generated and buried during the period of operation of the Mack Truck facility.

In March 1984, during the operation of Central Florida Mack Trucks, a tanker truck (owned by Waste Management, Inc.) containing three percent hydrochloric acid and an unknown grade of nitric acid, was stored onsite for repair. The tanker leaked an estimated 3,000 to 6,000 gallons of acid, which resulted in an explosion in the vicinity of the western rinsate pond. Waste Management excavated the spill area and disposed of the contaminated soils. The excavation was backfilled with clean fill (Brown and Caldwell Consultants (BCC) 1990).

#### 3.4 Initial Response

In addition, Chevron entered into an Administrative Order by Consent (AOC) with the EPA during 1990 to conduct a Contamination Assessment and Removal Plan for the site. Site contamination was assessed by BCC in accordance with the requirements of the AOC in order to investigate the potential for off-site migration of contaminants in the groundwater, and characterize the magnitude and extent of soil contamination (BCC 1990). A screening investigation of the groundwater was conducted to determine the maximum extent of groundwater contamination to the north and east of the site. A soil gas survey was conducted in the southwestern corner of the site to further define the nature and extent of petroleum product contamination in this area. The results of the soil gas survey, combined with the grid sample analytical results, were used to define an area of soil with petroleum product contamination where pesticide contamination was absent.

As a result of soil screening activities, a Removal Action was conducted by BCC from December 1991 through September 1992 (BCC 1991; 1992). The objective of this removal action was to excavate and remove material which could be a source to groundwater contamination or a risk to human health via the inhalation and dermal contact routes of exposure (as defined by the Agency of Toxic Substances and Disease Registry (ATSDR)). The ATSDR cleanup goals were to remove shallow soils (0- to 1-foot below ground surface [bgs]) with chlorinated pesticide concentrations in excess of 50 mg/kg, and remove deeper soils (1-foot bgs to the static water table) with chlorinated pesticide concentrations in excess of 100 mg/kg (TASK/PTI 1994b). The ATSDR further recommended the use of chlordane as an indicator chemical for the soil removal.

During the Removal Action (Figure 3-2), all remaining site structures were demolished and removed, 17,780 tons of pesticide-contaminated soil were excavated and properly disposed off-site, 4,900 tons of petroleum-contaminated soil were excavated and treated on-site, 90 to 100 gallons of a free-phase liquid were extracted from subsurface soils and disposed off-site, and 126,000 gallons of stormwater and groundwater recovered during the soil excavation were treated and discharged into an onsite infiltration trench. All excavated areas were backfilled with clean soil and the site graded and seeded.

The Removal Action Report (BCC 1992) describes the 1992 removal activities, presents a pre-Removal risk analysis, and discusses the groundwater investigations which were conducted. This report was submitted to the EPA in December 1992.

In 1993, Chevron voluntarily entered into another AOC with the EPA to conduct a Remedial Investigation/Feasibility Study (RI/FS) pursuant to the EPA's Superfund Accelerated Cleanup Model (SACM). The intent of this RI/FS was to further evaluate the migration of groundwater contaminants and investigate the potential for off-site soil contamination at the adjacent Armstrong Trailer Park resulting from historical stormwater runoff from the site.

The Remedial Investigation was performed as a dual-phase investigation conducted at the site from April 27, 1993 through April 29, 1994. Phase I activities were conducted to determine the nature and extent of potential groundwater contaminants using existing monitor wells. Phase II activities were designed to further assess the magnitude and extent of groundwater contamination, based on a computer model simulation of the contaminant plume (TASK/PTI 1994a).

Laboratory analytical results of the Phase II RI field sampling and analysis program identified chlorinated pesticide contamination in soil samples from isolated areas of the Armstrong Trailer Park, located adjacent to and downgradient from the northwest corner of the site.

Based on Phase II RI results, an additional Removal Action was conducted to excavate and remove the 0- to 1-foot layer of soil in five designated areas in the Armstrong Trailer Park property during March and April 1994 (Figure 3-3; TASK 1994). During this additional Removal Action, approximately 227 tons of soil containing chlordane at concentrations > 4.9 mg/kg was excavated and removed from the trailer park. The excavated areas were restored with clean soil and the site graded and covered with sod.

The additional Removal Action also encompassed treatment of groundwater generated during the RI pumping test and purging of the monitor wells, and disposal of drillicuttings and drilling mud collected in drums during the Remedial Investigation monitoring well construction. Approximately 6,000 gallons of pumping test and purge water were treated with a diatomacious earth filter to remove suspended particulates, followed by filtration through granular activated carbon (GAC) canisters. The treatment was accomplished in two batches, each of which was sampled and analyzed for hydrocarbons and chlorinated pesticides. No contaminants were detected in either batch of treated waters. The treated water was discharged on the Chevron Orlando site via spray irrigation.

The additional Removal Action successfully met the Removal Action goal by excavation and off-site disposal of soil with chlordane concentrations exceeding the preliminary remediation goal (PRG) of 4.9 mg/kg, demonstrated by the analytical results for confirmation samples and samples of the backfill material (TASK 1994). At the

completion of the additional Removal Action, approximately 40 tons of material from the site were transported to and disposed of in the Springhill Regional Landfill.

The Removal Action Report Amendment (TASK 1994) describes the 1994 removal activities, presents analytical results for confirmation samples and backfill material, and discusses the groundwater treatment and disposal conducted during the Remedial Investigation. This report was submitted to the EPA in December 1994.

In May 1994, the site was finalized on EPA's National Priority List (NPL). The listing was based on analytical results indicating the presence of pesticides, metals, and hydrocarbons in groundwater. The RI/FS documents were finalized in March 1995 and concluded that concentrations of groundwater contaminants had generally decreased with time and the contaminant plume had apparently reached equilibrium, ceasing to migrate beyond its current position (TASK/PTI 1994b).

In May 1996, EPA issued a ROD determining the groundwater remedy at the site to be monitored natural attenuation (MNA) and concluded that "No Further Action" was necessary to protect human health from exposure to on-site or off-site soils. This ROD set risk-based action levels for on-site surface and subsurface soils, on-site groundwater, and off-site surface soils.

In July 1997, EPA issued a Unilateral Administrative Order (UAO) to Chevron to implement the actions set forth in the ROD. Under the UAO, Chevron continues to monitor the groundwater biannually and submit the results to EPA for review.

#### 3.5 Basis for Taking Action

#### Contaminants

Hazardous substances identified as COCs by the EPA in the ROD include:

| On-Site                                                                       | On-Site                                                                                 | On-Site                                                                                                                                                              | Off-Site                      |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Surface Soil                                                                  | Subsurface Soil                                                                         | Groundwater                                                                                                                                                          | Surface Soil                  |
| 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin β-BHC Chlordane Dieldrin Heptachlor Epoxide | 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin α-BHC β-BHC γ-BHC (lindane) Chlordane Dieldrin Endrin | 4,4'-DDD α-BHC β-BHC γ-BHC (lindane) Chlordane Benzene Ethylbenzene Xylenes Total naphthalenes Arsenic Chromium Lead Arochlor-1260 1,4-Dichlorobenzene Chlorobenzene | Chlordane<br>Dieldrin<br>Lead |

A Baseline Risk Assessment (BRA) (Black & Veatch, 1995) was conducted in 1994 to assess the soil and groundwater contamination present on-site. Presently, ingestion of groundwater on-site or at one location adjacent to the site (MW-1) would pose an unacceptable risk based on the exceedance of risk-based cleanup levels and/or maximum contaminant level (MCL). However, no drinking water wells are currently located within the area of the groundwater plume.

Based on the results of the BRA (Black & Veatch, 1995), plume attenuation and stability calculations (Geomega, 2000d, 2001b, 2002b), and the ROD's on-site soil determination (EPA 1996), the medium of concern for remedial action is groundwater.

Since the groundwater in the surficial aquifer is not currently consumed it poses no risk to human health. Ingestion of groundwater at the site in the near future would be associated with unacceptable risk, because the groundwater contains contaminants above federal and/or State of Florida groundwater cleanup goals. These contaminants are limited to  $\alpha$ -benzene hexachloride ( $\alpha$ -BHC),  $\beta$ -BHC,  $\gamma$ -BHC, benzene, and chromium as all other COCs identified by the ROD currently meet federal and state goals. Exceedances of the chromium standard in local monitoring wells are not attributed to site conditions (Geomega 2001b). Recent plume attenuation and stability calculations (Geomega 2000d, 2001b, 2002b) indicate that there has been ongoing COC mass reduction and the plume center-of-mass has remained stable over the last nine years. In

addition, any potential consumption of groundwater on-site has been obviated via deed restrictions (EPA 1996). Therefore, potential threats of releases of hazardous substances from the site have been addressed through implementation of the response action selected in the ROD to prevent "an imminent and substantial endangerment to public health, welfare, or the environment."

#### 4 Remedial Actions

#### 4.1 Remedy Selection

The ROD for the Chevron Orlando site was signed by the EPA on May 22, 1996. Remedial Action Objectives (RAOs) were developed as a result of data collected during the RI/FS to develop and screen remedial alternatives to be considered for the ROD. Following the 1992 on-site source material excavation and removal, and the 1994 off-site soil removal activities at the Armstrong Trailer Park, groundwater issues were the focus of the selected remedial actions presented in the 1996 ROD. Therefore, the RAOs for the site were developed only for groundwater and include the following:

#### Source Control Response Objectives

- Prevent potential ingestion of contaminated groundwater for the protection of human health;
- Prevent further groundwater quality degradation for the protection of the environment;

#### Management of Migration Response Objectives

- Prevent exposure to groundwater contaminants for the protection of human health and the environment;
- Prevent further migration of groundwater contamination beyond its current extent.

The major components of the groundwater control remedy selected in the ROD include:

- 1. The implementation of deed restrictions/notices or institutional controls to prohibit consumption of contaminated groundwater until the cleanup standards have been met;
- Routine maintenance of the site including fence maintenance, grass mowing, etc.;
- A contingency plan which includes the installation of a subsurface filter wall or
  other measures such as limited air sparging, hydraulic gradient control, or source
  removal to be implemented as necessary;

The major components of the groundwater management of migration remedy selected in the ROD include:

- Use MNA or natural degradation to achieve groundwater cleanup levels;
- Groundwater monitoring of existing wells on the Chevron property and adjacent to the site;
- 3. Five-year site reviews to assess site conditions, groundwater contaminant distributions, and any associated site hazards.
- 4. The proper closure of the site after performance standards are met.

#### 4.2 Remedy Implementation

The UAO was issued by EPA in July 1997 for Chevron to implement the ROD. Under the UAO, Chevron continues to monitor the groundwater biannually and submit the results to EPA for review. Natural attenuation and monitoring were retained because the "long-term effectiveness of all the alternatives is similar" (TASK/PTI 1994b).

Soil removal, prior to the UAO being issued to Chevron in 1997, took place in 1992. Soil excavation (Figure 3-2) was performed in response to a Removal Action AOC in 1990 between the EPA and Chevron (BCC 1992). This on-site chlordane-based soil removal action took place from December 1991 to September 1992 and resulted in the removal of shallow soils (0- to 1-foot below ground surface) with chlorinated pesticide concentrations in excess of 50 mg/kg and deeper soils (>1-foot deep) with chlorinated pesticide concentrations in excess of 100 mg/kg.

The 1992 removal action resulted in excavation of approximately 50% of the site's surface soil and 17% of the subsurface soils above the water table. All excavated areas were backfilled with clean soil and the areas graded and seeded. The soil excavation activities did not explicitly address effects of soil removal on the nature and extent of groundwater COC concentrations.

Additional soil removal activities were conducted in 1994 at the Armstrong Trailer Park, located adjacent and to the north of the site, in response to Chevron entering into a voluntary AOC with the EPA in 1993 to conduct the RI/FS for the site. Based on soil screening analysis, five areas within the Armstrong Trailer Park (Figure 3-3) were excavated to a depth of 1 foot bgs, or to the Removal Action goal of 4.9 mg/kg chlordane (Task 1994).

The EPA has determined that all soil removal activities were performed according to specifications. FDEP has concurred regarding the off-site soil removal. However, the ROD states "FDEP agrees with the groundwater remedy, but does not agree with no further action for [on-site] soil."

A Remedial Design/Remedial Action (RD/RA) program for MNA was developed (TASK 1997) to satisfy the ROD monitoring requirements. The program consisted of semi-annual water level measurement and groundwater sample collection and analyses (Table

4-1) for chemical compounds of interest and indicator parameters for evaluating natural attenuation.

Since the implementation of the ROD remedial actions in 1997, data analysis reports have been produced, integrating current groundwater monitoring data with all available historical groundwater data to develop a working hypothesis of the fate and transport of chemicals of concern at the site. This data integration and analysis has been compiled in biannual groundwater sampling reports (Geomega, 2000a, 2000b, 2001a, 2001b, 2002a, 2002b) and the following supplemental reports:

- Groundwater Data Analysis and Supplemental Groundwater Modeling, Chevron Orange Blossom Trail Site, Orlando, Florida (Exponent 1998);
- Comprehensive Data Review and Hydrogeochemical Conceptualization of the Chevron Orlando Site (Geomega 1999);
- Plume Stability: A Computational Interpretation Using the Center of Mass Technique" (Geomega 2000c);
- BHC in Chevron Orlando Groundwater: Evidence for Plume Attenuation and Stability (Geomega 2000d).

#### 4.3 Groundwater Monitoring/Operation and Maintenance (O&M)

This section provides a brief description of the MNA program, Operation and Maintenance (O&M) requirements, O&M activities to date, problems encountered, and O&M costs. A detailed description of the MNA program and O&M requirements for the Orlando site are presented in the *RD/RA program* (TASK 1997), requiring Chevron to conduct long-term groundwater monitoring and maintain regulatory and institutional controls to limit the future use of the site.

#### 4,3.1 Monitored Natural Attenuation (MNA) Program

The purpose of the groundwater monitoring program is to gain a mechanistic understanding of the processes governing natural attenuation of COCs, and to monitor these processes and associated geochemical parameters, COC concentrations, and COC degradation products over the long term. The intent of the groundwater monitoring program is to confirm the postulation that MNA will provide an effective groundwater remediation strategy for the site. This groundwater remedy utilizes natural biodegradation processes occurring within the surficial aquifer to achieve RAOs established in the ROD. The results from each biannual sampling event are used to assess the efficacy of MNA as an effective groundwater remedy.

The MNA program has consisted of the following activities:

- Water level measurements,
- Field parameters and geochemical measurements (e.g., pH, Eh, dissolved oxygen, conductivity, temperature, total Fe, Fe<sup>2+</sup>, sulfate, sulfide, alkalinity), and
- Laboratory analysis of COCs, dissolved gases, inorganics, and daughter products.

The field measurements, dissolved gas, and inorganics analyses are used to assess the geochemical conditions of the groundwater at the site. COC analytical results are evaluated against previous sampling rounds to determine their reduction with time relative to ROD clean-up standards. Data analysis was performed to determine the temporal and cumulative efficacy of natural attenuation processes to reduce groundwater contaminant concentrations. Analytical and field results were also used in EPA's MNA score sheet to assess the efficacy of natural attenuation at the site (see Section 6.4.4).

Groundwater monitoring program chemical analyses included:

- purgeable aromatic compounds (EPA Method 8021)
- purgeable halocarbon compounds (EPA Method 8021),
- semi-volatile organic compounds (EPA Method 8270),
- chlorinated pesticides (EPA Method 8081),
- organophosphate pesticides (EPA Method 8141), and
- arsenic, chromium, and lead (EPA Method 6010)

These analytes were measured according to the schedules summarized in Table 4-1.

#### 4.3.2 O&M Requirements

In order to achieve cleanup of the groundwater at the Chevron Orlando site, sampling and analysis of groundwater samples collected from select monitoring wells will be performed to assess the degree of natural attenuation occurring at the site. Operation and maintenance requirements are presented in the RD/RA program (TASK 1997).

The O&M requirements of the approved RD/RA program include:

- Deed restrictions/notices or institutional controls to prohibit consumption of contaminated groundwater until the cleanup standards have been met;
- Routine maintenance of the site including fence maintenance, grass mowing, etc.
- Groundwater monitoring to document the expected reduction in contaminant concentrations and to evaluate potential contaminant migration;
- Analytical results showing evidence of natural degredation and/or attenuation of groundwater contaminants;

- A contingency plan which includes the installation of a subsurface filter wall.
   Other measures such as limited air sparging, hydraulic gradient control, or source removal, would be implemented as necessary. The contingency would be invoked if one of the following conditions is met:
  - Contaminant concentrations do not decrease by 10 to 15% within one year.
  - Contaminant concentrations in subsequent years do not decrease as expected.
  - Organic contaminants are detected in sentinel monitoring wells MW-11 or MW-15.

The MNA program has included 14 locations, which are cross-gradient, downgradient, and upgradient of the former contaminant source areas located on the Chevron property. Monitoring has been conducted biannually since adoption of the ROD, and continues today.

#### 4.3.3 O&M Activities to Date

Biannual water level monitoring, field parameters and geochemical measurements, COC and MNA sampling, and data evaluation has been conducted according to the scope of work adopted in TASK 1997 and updated in Geomega 2001. The most recent monitoring event occurred in September 2002. Routine monthly/bimonthly maintenance activities include mowing grass, removing weeds and vegetation along the fence-line, trimming trees, maintaining chain-link fence integrity, collecting garbage and debris, and painting the block wall and monitor well covers.

#### 4.3.4 Problems Encountered

Since the MNA sampling program was initiated in October 1997, the program has been implemented and no monitoring system maintenance or troubleshooting activities have been required.

Detections of chromium in groundwater samples from certain wells during the 1999 sampling events encouraged the modification of the analytical components to include additional metals to investigate the possibility of deterioration of the stainless steel well casings. However, after monitoring metal components in the groundwater system, it was concluded that high chromium detections in offsite wells MW-2S, MW-6S, and MW-15 are originating from a source not related to the site or monitoring wells (Geomega 2001b).

Methyl tertiary-butyl ether (MTBE) from an upgradient source crossed the site, detected in MW-10 and MW-16 between 1995 and 2000.

Off-site monitoring well MW-13 was vandalized in 1997 leaving the well unsuitable for water level and water chemistry measurements.

#### 4.3.5 Annual System Operations/O&M Costs

Chevron is conducting long-term monitoring and maintenance activities according to the RD/RA program (TASK 1997) developed for the site and approved by EPA.

## 5 Progress Since the Last Five-Year Review

This is the first five-year review for the site.

#### 6 Five-Year Review Process

#### 6.1 Administrative Components

The EPA notified CCC of the need for a five-year review in the fall of 2001. CCC agreed to prepare the technical and community involvement portions of the report. The review team consisted of EPA (the Remedial Project Manager) and CCC (with its contractors). EPA developed a schedule which anticipated EPA approving the five-year review by December 2002.

#### 6.2 Community Involvement

The Remedial Project Manager (RPM) initiated the five-year review for the Orlando site in fall of 2002. Upon completion of the review, a notice will be placed in the local newspaper notifying the public that the review has been conducted, the purpose of the review, and the contact information for EPA. Additionally, a final copy of the review report will be placed in the information repository for the Site which is located at the Orlando Public Library, Edgewater Branch, 6250 Edgewater Drive, Orlando, Florida 32810.

#### 6.3 Document Review

This five-year review consisted of a review of relevant documents including O&M records and monitoring data (See Attachment 1). Applicable groundwater cleanup standards, as listed in the 1996 ROD, were reviewed (See Attachment 2).

#### 6.4 Data Review

#### 6.4.1 Soil Remediation Activities

Soil remediation activities at the Chevron Orlando site began in 1992, prior to issuance of the final ROD in 1996 and the EPA's UAO in 1997. Remedial activities for this medium were performed in two separate events: (1) on-site soil removal action between December 1991 and September 1992 (BCC 1992); and (2) off-site soil removal action between March and April 1994 (Task 1994). All soil remediation and site restoration activities (i.e., demolishing and removing all buildings and structures) were completed by 1995. However, the soil remedial activities did not address effects of soil removal on the nature and extent of groundwater COC concentrations. The data reviewed in this report include

a comparison of initial and final COC levels in the surface and subsurface soils at the Orlando site. Soil analytical data are presented in Table 6-1. Based on the soil data, the intent of the on-site and off-site soil remediation activities have been conducted and fulfilled in accordance with EPA specifications.

In May of 1990, Chevron signed an AOC with the EPA, resulting in the 1992 on-site excavation and off-site disposal of 17,780 tons of pesticide-contaminated soil, the excavation and off-site treatment of 4,900 tons of petroleum-contaminated soil, the extraction of 90 to 100 gallons of a free-phase liquid from subsurface soils, and the treatment and on-site discharge of 126,000 gallons of stormwater and groundwater recovered during the soil excavation. All excavated areas were backfilled with clean soil.

In January 1993, Chevron voluntarily entered into an AOC with the EPA to further evaluate on-site groundwater contamination and assess the potential for off-site soil contamination by conducting a RI/FS pursuant to the EPA's SACM. In response to laboratory analytical results of the Phase II RI field sampling and analysis program, Chevron performed an additional Removal Action in March 1994, resulting in the excavation and off-site disposal of approximately 230 tons of pesticide contaminated soil from the adjacent Armstrong Trailer Park. All excavated areas were backfilled with clean soil.

#### 6.4.2 Post-Removal Soil Conditions

The extent of on-site soil excavation was defined by soil samples with concentrations of COCs below performance standards (Figures 6-1 through 6-3; Table 6-2). Based on these data, the intent of the on-site surface soil remediation has been completed. Similarly, off-site soil excavation was defined with residual concentrations below risk-based performance standards (Figure 6-4, Table 6-3, Geomega 2000d).

As a result of the soil removal efforts, EPA has determined that "No Further Action" is necessary for soil at the site and risk levels associated with soils are considered to be "protective of human health and the environment" as stated in the 1996 ROD. However, FDEP suggested that a more stringent risk level may be necessary to achieve deletion of the site from the NPL.

#### 6.4.3 Groundwater Monitoring

Chevron has been conducting a groundwater monitoring program since 1997 to determine the efficacy of MNA as the site groundwater remedy. The MNA assessment also utilizes groundwater data from as early as 1991. The primary objectives of this program are to gain a mechanistic understanding of the processes governing natural attenuation of COCs in a natural environment, and to monitor these processes and associated geochemical parameters, COCs, and COC degradation products over the long term. The results of the latest monitoring event in September 2002 are included in Appendices A through D.

According to the U.S. EPA (1997), natural attenuation processes include physical, chemical, or biological processes that, under favorable conditions, act without human intervention to reduce the mass, toxicity, mobility, volume, or concentration of contaminants in soil or groundwater. Natural attenuation processes at the site have been evaluated through the use of four indicators recommended in the *Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites* (Office of Solid Waste and Emergency Response (OSWER) Directive No. 9200.4-17P, April 21, 1999) for evaluating the performance of an MNA remedy. The four indicators are:

- Demonstrate that natural attenuation is occurring according to expectations;
- Verify that the plume is not expanding either downgradient, laterally or vertically;
- Identify any potentially toxic or mobile transformation products; and
- Detect changes in the environmental conditions that may reduce the efficacy of the natural attenuation processes.

Groundwater monitoring has been conducted at the site since October 1991 (Figure 6-5). Groundwater data for COCs have generally exhibited temporal variability since 1991 (Figures 6-6) and demonstrated decreasing or stabilizing COC levels from peak concentrations. The temporal trends indicate that the contaminant plume has apparently reached equilibrium and has ceased to migrate beyond its current position. These conclusions have all been strengthened by recent groundwater analytical data and plume attenuation and stability calculations, indicating that the COCs are naturally attenuating throughout the site (Geomega, 2000d, 2001b, 2002b).

Historically, organic COCs have been detected in groundwater at most on-site wells and three off-site locations (MW-1S and -1D, MW-2S and -2D, and MW-5D). There were also detections in MW-12, MW-15 and MW-6D during one semi-annual sampling event apiece, although these detections were attributed to analytical uncertainty because COCs have not reappeared subsequently (Geomega 2000b, 2002a). Inorganic COCs (i.e., Pb and Cr) have been detected in all on- and off-site wells.

The lateral extent of the organic COCs is constrained in the downgradient directions by MW-6 to the north, MW-11 and MW-15 to the northeast, and MW-12 to the east. Vertically, pumping test and analytical results from MW-14, a Floridan aquifer monitor well located in the center of on-site groundwater COC concentrations (Figure 6-5), show that COCs are confined to the surficial aquifer (TASK PIT 1994).

In order to establish MNA as the groundwater remedy for the site, the ROD required Chevron to demonstrate that groundwater COC concentrations would naturally decrease by at least 10-15% from April 1995 to May 1996. Comparing average analytical results between April 1995 to February 1996 (the relevant compliance interval) across the monitoring well network shows that COC concentrations declined by up to 49% during this time period (Appendix B). Xylene appears to increase by 5%, however, this interpretation appears anomalous due largely to values observed at MW-8 in February

1996. The calculation of changes in COC concentrations between April 1995 and February 1996 in this manner (Appendix B) does not account for groundwater variability and was conducted to put COC concentrations in the ROD context

An analysis of water level elevation vs. COC concentration shows that short-term temporal variability in COC concentrations is associated with changes in water level elevation (Geomega 1999). A correlation was established between average total BHC concentrations and depth to water, suggesting that the rise and fall observed in site water levels controls groundwater BHC concentrations. As additional sampling events have consolidated the groundwater system characterization, a statistically significant correlation (p>0.99) between average total BHC concentrations and depth to water level was identified (Figure 6-7), confirming that the rise and fall observed in site water levels controls groundwater BHC concentrations. The correlation with depth to water is less significant for BTEX compounds because these compounds do not sorb strongly to soils as evidenced by average concentrations of these COCs clearly showing a consistent degradation over time (Figure 6-8).

Groundwater monitoring results indicate that a decrease in the water level between sampling events generally displays increased COC concentrations over the same time period (Pigure 6-7). This strong correlation relationship between COC concentrations (particular BHC-isomers) and the groundwater elevation suggests an alternative interpretation of COC diminution is more appropriate than comparing COC analytical results from consecutive sampling events. Comparing analytical results at similar water levels demonstrates a consistent decrease in COC concentrations (Figures 6-9 through 6-11) between the initial post-removal measurement (1993) and the most recent consistent water table measurements (October 1997). Furthermore, the rate of decrease for the total BHC-isomers has been found to be slower than the rate of decrease for benzene, toluene, ethylbenzene and xylene (BTEX) compounds. Historical data for all wells are presented in Appendix B. Appendix C contains figures of water level versus COC concentration for each individual well from 1991 to the present.

These observed trends in site monitor wells are good indicators that COCs remain near their original source areas. Additionally, the available groundwater data for the site suggest that there is "moderate evidence" for natural attenuation when incorporated into a modified form of the Natural Attenuation Score Sheets developed by the EPA for chlorinated solvents (Table 6-4). This monitoring record indicates that the groundwater COC attenuation process conceptualized in the ROD is proceeding as expected.

Historical and recent groundwater data support evidence that natural attenuation processes at the site are continuing to provide adequate protection of human health and the environment as specified in the ROD. The groundwater data have been synthesized into the site interpretation and will be utilized in the ongoing monitoring and assessment of the efficacy of MNA for the site groundwater remedy.

Over the past eight years since on-site soil removal activities were completed in 1994, there has continually been clear evidence of BTEX solute reduction with decreased

concentrations in off-site wells (e.g., MW-2D; Figure 6-12) and in wells located adjacent to the soil remedial activities (e.g., MW-38, MW-3D and MW-8S). In other on-site wells (e.g. MW-4D), solute behavior is more complex with oscillating concentrations superimposed on an overall declination in BTEX concentrations (Figure 6-13). Examination of the BHC isomers shows similar decreasing concentration patterns in some cases (e.g., MW-2D; Figure 6-12), and oscillating concentrations in other wells (e.g., MW-4D; Figure 6-13) distal to the soil removal action.

Based on the spatial extent of groundwater COCs, the perimeter of the affected groundwater region has not varied substantially since sampling of the current monitoring well network commenced in September 1993. Center of mass calculations for the groundwater COCs (Figure 6-14) show that the β-BHC center of mass is consistently located between monitoring well locations MW-4 and MW-10 and the xylene center of mass remains located between MW-4 and MW-1. Additionally, cross-sections from southwest to northeast across the site (Figures 6-15 and 6-16) show that COC concentrations in on-site monitoring wells fluctuate temporally and display peak concentrations consistently located at MW-4. Distal wells upgradient (MW-8, b-BHC) and downgradient (MW-11 and MW-15, a-BHC) remain stable with COC concentrations below method detection limits for the last 3 to 4 consecutive sampling events. The spatial stability of groundwater COCs has been further supported by recent monitoring well data indicating that downgradient wells are uninfluenced by site conditions.

Plume attenuation and stability calculations indicate that there has been ongoing COC mass reduction and the plume center of mass has remained at steady state over the last 9 years (Figure 6-14; Geomega, 2000, 2001, 2002). More than 97% of the total BHC mass in soils and groundwater has been removed from the site by excavation, extraction, and natural attenuation as the total mass of dissolved BHCs in groundwater alone decreased from 1968 grams in 1991 to 649 grams in 2002 (Figure 6-17).

Currently, other groundwater COC concentrations (Section 6.4.4) have remained below the cleanup standards with the exception of chromium where sporadic off-site exceedances are not attributed to the site (Geomega 2001b).

Groundwater geochemical conditions and contaminant trends are discussed in detail in the following sections.

#### 6.4.4 Groundwater Remediation

The RI/FS documents concluded that concentrations of groundwater contaminants had generally decreased with time and the contaminant plume had apparently reached equilibrium, ceasing to migrate beyond its current position (Task-PTI 1994). In May 1996, the ROD issued by the EPA concluded that potentially unacceptable risk is associated with this site due to potential future consumption of groundwater containing contaminants above either federal or State of Florida groundwater standards. BHC isomers, benzene, ethylbenzene, and xylene in on-site groundwater were the most important contributors to estimated risks; therefore, these contaminants have been the focus of groundwater remediation since 1997.

Currently, ingestion of groundwater on-site or at one monitoring well location adjacent to the site (MW-1) would pose an unacceptable risk. However, no drinking water wells are currently located within the area of the groundwater plume, and any potential consumption of groundwater on-site has been obviated via deed restrictions (EPA 1996). The groundwater in the surficial aquifer is not currently consumed on-site and potential threats of releases of hazardous substances from this site have been addressed through the implementation of the response action selected in the ROD to prevent "an imminent and substantial endangerment to public health, welfare, or the environment". Therefore, the groundwater currently poses no immediate risk to human health.

The following cleanup goals for groundwater were identified in the 1996 ROD:

| COC                         | Performance Standard μg/l |
|-----------------------------|---------------------------|
| $\alpha \overline{^{-}BHC}$ | 0.05                      |
| в-внс                       | 0.1                       |
| y-BHC                       | 0.2                       |
| 4,4'-DDD <sup>1</sup>       | 0.1                       |
| Chlordane                   | 2                         |
| Benzene                     | 1                         |
| Ethylbenzene                | 30                        |
| Xylene                      | 20                        |
| Arsenic                     | 50                        |
| Chromium                    | 100                       |
| Lead                        | 15                        |
| Napthalenes                 | 100                       |

<sup>1,1-</sup>dichloro-2,2-bis(p-chlorophenyl) ethane

To verify that long-term cleanup goals are being met, groundwater chemistry has been analyzed to investigate the potential for, and evidence of degradation of COCs, including chlorinated pesticides ( $\alpha$ -,  $\beta$ -, and  $\gamma$ -BHC, chlordane, and DDD), purgeable aromatic compounds (benzene, ethylbenzene, and xylene), metals (arsenic, chromium, and lead), and base-neutral organics (napthalene).

#### 6.4.4.1 Evidence of COC Natural Attenuation

The available groundwater data suggest that there is "moderate evidence" for natural attenuation when incorporated into a modified form of the Natural Attenuation Score Sheets developed by the EPA for chlorinated solvents (Table 6-4). These scoresheets represent a useful template for application to other situations where MNA for other chlorinated compounds must be evaluated (Davis et al. 1999). In addition, pesticide daughter products have been detected in site monitoring wells, providing further evidence of natural attenuation (Geomega 2000).

Trends in groundwater COC's in site monitor wells are good indicators of contaminants remaining in the groundwater near to the original source areas. This monitoring record indicates that the groundwater COC attenuation process conceptualized in the ROD is proceeding essentially as expected. Historical data for all wells are presented in Appendix B.

The following sections describe the groundwater geochemical conditions, contaminant trends, biodegradation pathways, and results of the EPA's MNA scoring system.

#### 6.4.4.2 Groundwater Geochemistry

Site and local groundwater has remained slightly acidic with a pH between 4.0 and 7.0, with the lowest pH occurring in off-site monitor wells. Groundwater generally has low concentrations of dissolved solids (SC <500 µmhos/cm²), with shallow wells having a higher specific conductivity than the deep monitoring wells. On-site monitoring wells have low dissolved oxygen concentrations (<1 mg/L) along with reducing redox potentials (Eh<0), indicating environmental conditions conducive to the reductive dechlorination of the BHC compounds. Distal off-site wells (MW-11, MW-12, MW-15) also have relatively low dissolved oxygen concentrations but, in contrast, have oxidizing redox potentials (Eh>150). Dissolved iron concentrations are consistent with the measured Eh values and correlate well with on-site wells having higher concentrations of reduced ferrous iron (Fe<sup>12</sup>) than the distal off-site wells. There is also abundant (up to 6.6 mg/l) sulfide in solution confirming the reducing nature of the groundwater. Reducing conditions appear to be stronger in the deeper monitoring wells than in the collocated shallow wells.

#### 6.4.4.3 Disposition of Groundwater COC Plume

The location and extent of the groundwater plume was determined for key COC's including  $\alpha$ -BHC,  $\beta$ -BHC,  $\gamma$ -BHC, ethylbenzene and xylene. Center of mass calculations for BHC-isomers and BTEX components demonstrate the spatial stability of the groundwater COC's since soil removal activities were completed in 1994. Calculations have consistently located the COC plume center of mass in the vicinity of monitoring well MW-4 (Figure 6-14), indicating that the plume is not migrating downgradient towards the perimeter wells or other off-site areas. The groundwater monitoring record shows that the plume remains confined almost entirely within the site boundary despite nearly 40 years of existence. Hence, it is apparent that there are attenuation factors (hydraulic, geochemical, biochemical, etc.) that are acting to minimize the effect of historically uncontrolled releases, and have therefore curtailed the COC distribution in the environment.

Based on the spatial extent of groundwater COCs, the perimeter of the affected groundwater region has not varied substantially since sampling of the current monitoring well network commenced in September 1993. Indeed, even in MW-5D, there have been low concentrations of BHC-isomers detected since 1995 (Figure 6-18). To further evaluate the potential flux of COCs to the downgradient margin, migration was

investigated by determining the spatial disposition of the center of COC mass within the body of the plume.

The proclivity for COC plume migration was determined by calculating the center of mass for groundwater COCs based on the available monitoring well data collected since September 1993. Groundwater data for each individual sampling event was kriged using the Environmental Visualization System (EVS; C-Tech 1999) in order to derive estimates for COC concentrations throughout the entire groundwater perimeter. The location of the center of mass was then calculated following the method of Mizrahi and Sullivan, 1986.

The calculations show that the center of mass for  $\beta$ -BHC is consistently located between monitoring well locations MW-4 and MW-10 (Figure 6-14). The precise location of the center of mass varies; however, there is no trend to the locus, hence it appears that the plume is oscillating backwards and forwards rather than migrating downgradient towards the perimeter wells. For xylene, the center of mass is slightly offsite (Figure 6-19), however, similar to  $\beta$ -BHC it remains consistent over time, demonstrating no net migration of xylene further downgradient from the source area.

#### 6.4.4.4 Water Level Elevation vs. COC Concentration

Aquifer water elevations have been measured during each groundwater sampling event. These data have been used to generate water level contour maps and determine the local groundwater hydraulic gradient. An analysis of water level elevation vs. COC concentration showed that short-term temporal variability in COC concentrations is associated with changes in water level elevation (Geomega, 1999). A correlation was established between average total BHC concentrations and depth to water, suggesting that the rise and fall observed in site water levels controls groundwater BHC concentrations. As additional sampling events have consolidated the groundwater system characterization, a statistically significant correlation (p>0.99) between average total BHC concentrations and depth to water level was identified (Figure 6-7), confirming that the rise and fall observed in site water levels controls groundwater BHC concentrations. Other temporally related changes (e.g., potential lateral flow, natural attenuation, etc.) appear to be less important.

The correlation with depth to water is less significant for BTEX compounds because these compounds do not sorb strongly to soils as evidenced by average concentrations of these COCs clearly showing a consistent degradation over time (Figure 6-8). Therefore, BTEX groundwater concentrations are not as dependent on sorption/desorption mechanisms as the BHC isomers. This realization implies that COC concentrations, in particular the BHC-isomers, must be examined in conjunction with water level elevations in order to achieve an accurate interpretation. This theory has been strengthened by recent monitoring results which indicate that a decreased in the water level between sampling events generally displays increased COC concentrations over the same time period (Figure 6-7). Appendix C contains figures of water level versus COC concentration for each individual well from 1991 to the present. Hence, an increase in groundwater COC concentrations between consecutive sampling events is not necessarily indicative of

plume migration, nor is a decrease between consecutive sampling events necessarily evidence of natural attenuation.

#### 6.4.4.5 Degradation and Attenuation Pathways

Natural attenuation processes that regulate solute transport in groundwater include degradation (both biotic and abiotic), advection, dispersion, dilution, sorption, volatilization, chemical reactions and geochemical transformations. Indicator parameters of the degredation and attenuation processes occurring at the Orlando site are evidenced by geochemical conditions and biodegradation pathways observed at the site. Different compounds degrade by different mechanisms which are dependent upon the unique environmental setting of the site. To verify that long-term cleanup goals are being met at the Orlando site, groundwater chemistry has been analyzed to investigate the potential for, and evidence of, degradation of COCs, including chlorinated pesticides ( $\alpha$ -,  $\beta$ -, and  $\gamma$ -BHC), purgeable aromatic compounds (benzene, toluene, ethylbenzene and xylenes), and metals (chromium and lead).

Abiotic chemical reactions, such as hydrolysis, serve as natural attenuation mechanisms to reduce solute mass. Biodegradation is the transformation and detoxification of organic chemicals to smaller molecules through oxidation and reduction reactions induced by metabolic activity of microorganisms. Advection is the average movement of groundwater in the direction of flow that functions as a transport mechanism to spread the centroid of the mass of the solute plume in a downgradient direction, causing the solute plume to migrate temporally. Dispersion includes hydrodynamic dispersion, or dispersivity, and diffusion transport mechanisms that act to spread the solute mass downgradient in the aquifer. Dilution is the reduction of the concentration and potency of chemicals as a result of continual recharge of groundwater in an aquifer with a finite amount of solute mass.

At the Orlando site, sorption is a significant attenuation mechanism for many of the COCs in the groundwater. Contaminant migration through the subsurface will be retarded as a result of their low water solubility and their affinity for partitioning from water to soil particles in the site's sluggish hydrologic environment of the groundwater system. COC degradation and attenuation processes in subsurface conditions are complex due to small-scale geologic, hydrologic, biological and chemical heterogeneities. Therefore, knowledge of the geochemistry and degredation pathways is essential in the recognition of natural attenuation indicator parameters at the Orlando site.

#### 6.4.4.6 Biodegradation Pathways

The Orlando site groundwater COCs fall into three general classes of chemical compounds:

- chlorinated organic compounds ( $\alpha$ -,  $\beta$ -, and  $\gamma$ -BHC,  $\alpha$  and  $\gamma$ -Chlordane, and DDD),
- non-chlorinated aromatic compounds (benzene, toluene, ethylbenzene and xylenes),
   and

#### metals (arsenic, chromium and lead)

Each class of compounds degrades by different mechanisms. Although chlorinated solvents have been studied more extensively, similar pathways generate residues from organochlorine pesticides (e.g.,  $\alpha$ -,  $\beta$ -, and  $\gamma$ -BHC, and DDT). The major pathway for degradation of chlorinated organic compounds is dechlorination. For example, anaerobic biodegradation of DDT (Aislabie and Lloyd-Jones 1995, McRae 1989) proceeds through the intermediates DDD, bis(p-chlorophenyl)acetic acid (DDA), and p-p-diclorobenzophenone (DBP) by reductive dechlorination (Figure 6-20). Since these intermediates have no other natural or anthropogenic source, their presence in the Orlando site groundwater is likely due to DDT biodegradation. DDT biodegradation can occur either aerobically or anaerobically, with each pathway producing different daughter products.

The BHC isomers degrade initially through dehydrohalogenation (Figure 6-21).  $\alpha$ - and  $\beta$ -pentachlorocyclohexene (PCCH) are both potential degradation intermediates of  $\alpha$ -BHC, while  $\gamma$ -BHC degrades only through the  $\gamma$ -PCCH intermediate (Adhya et al. 1996, Bachmann et al. 1988, Deo et al. 1994, Jagnow et al. 1977, Huhnerfuss et al. 1992). The only  $\beta$ -BHC daughter product identified in the literature was chlorobenzene (Van Eekert et al. 1998), but based on analogous reaction stereochemistry it is reasonable to assume that  $\beta$ -BHC degrades through the  $\beta$ -PCCH intermediate. Dehydrohalogenation of BHC compounds occurs mainly under reducing conditions to form chlorobenzene compounds, but aerobic degradation to chlorophenols has also been reported (Deo et al. 1994, Huhnerfuss et al. 1992).

Xylenes can degrade by several mechanisms under aerobic or anaerobic conditions (Beller et al. 1995; Kelly et al. 1997). Three of the most common daughter products are catechol, cresol, and toluic acid (Figure 6-22).

#### 6.4.4.7 Geochemical Conditions

The characterization of COC degradation and the inter-related redox processes in the subsurface are complex due to small-scale geologic, hydrologic, biological and chemical heterogeneities. Therefore, it is important to measure as many indicator parameters as possible to obtain a data set that will help in determining if natural attenuation is occurring in the Orlando site shallow groundwater.

Dissolved hydrogen (H<sub>2</sub>) concentrations are useful as an indicator of microbially mediated redox processes because fermentative microbial respiration continuously produces H<sub>2</sub> during anoxic decomposition of organic compounds (Chapelle et al. 1996). Hydrogen is a source of electrons for reductive dechlorination of anthropogenic compounds; hence its detection in groundwater provides evidence for conditions conducive to this mechanism. Other reduced compounds (e.g., ferrous iron, hydrogen sulfide, and methane) also provide a potential electron source, i.e.,

$$Fe^{+2} + 3H_2O \Rightarrow Fe(OH)_{3(s)} + 3H^+ + e^-$$
 (1)

$$H_2S_{(e)} + 4H_2O \Leftrightarrow SO_4^{-2} + 10H^+ + 8e^-$$
 (2)

$$CH_4 + 2H_2O \Leftrightarrow CO_2 + 8H^{\dagger} + 8e^{-}$$
 (3)

The ambient hydrogen concentration is dependent upon the dominant electron acceptor process in the groundwater system. Typically, Fe (III) reducers operate at H<sub>2</sub> concentrations of 0.2–0.8 nmol/L, sulfate reducers at 1-4 nmol/L, and methanogens at 5-15 nmol/L (Chapelle et al. 1996).

Other dissolved gases may be helpful in determining the predominant redox processes. For example, ethane and ethene can be reduced to methane, and nitrate can be reduced to nitrogen gas according to:

$$2CH_{4(g)} \Leftrightarrow C_2H_6 + 2H^{\dagger} + 2e^{-} \tag{4}$$

$$2CH_{4(g)} \Leftrightarrow C_2H_4 + 4H^+ + 4e^- \tag{5}$$

$$N_{2(e)} + 6H_2O \Leftrightarrow 2NO_3^- + 12H^+ + 2e^-$$
 (6)

The presence of these gases is indicative of a reducing environment in the groundwater and provides supporting evidence for an environment conducive to reductive dechlorination.

Reductive dechlorination usually occurs under anoxic conditions (i.e., oxygen <0.5 mg/L). Nitrate or sulfate may act as electron acceptors and interfere with the reductive pathway if concentrations are high enough. Hence, the valence state of multi-valence elements such as nitrate and sulfate may provide insight to geochemical controls that enhance or prevent natural attenuation reactions. The presence and/or absence of combinations of multi-valent species have been shown to act as indicators to evolving redox conditions in groundwaters (Baedecker et al. 1979, Davis et al. 1994). For example, the presence of both ferrous iron and sulfate is indicative of anoxic, mildly reducing conditions, while sulfide and methane are representative of more strongly reducing conditions.

Other geochemical conditions that are important indicators of the potential for the system to reductively dechlorinate compounds include redox potential (Eh) of <50 mV at a pH of 5 to 9, and temperature >20 °C (1997). Total organic carbon >20 mg/L, BTEX >0.1 mg/L, and volatile fatty acids >0.1 mg/L indicate that there is adequate organic material available to provide a primary metabolic energy source for the microbial consortium that facilitates reductive reactions. In addition, the presence of chloride above twice the background chloride level is also an indication of reductive dechlorination.

#### 6.4.4.8 COC Cosolvent Transport

Cosolvency results when sufficiently large quantities of an organic solvent in groundwater increase the solubility and desorption of solute organic chemicals. For example, in a solution that contains water and a solvent, such as xylene, the solubility of an organic chemical, such as DDT, can be increased due to the combination of water and solvent in the cavity that results in shared hydration shells. Such a condition exists when the solvent is present at greater than 10-20% by volume (LaGrega et al., 1994; Schwarzenback et al., 1993). As the quantity of the organic chemicals decreases (less than  $10^{-3}$  volume fraction), there is extremely low probability of the hydration shells overlapping, and thus little affect on the solubility (Schwarzenbach et al., 1993).

Conversely, solute sorption to soils decreases in the presence of large quantities of solvent due to several factors, including competition for sorption sites, removal of organic matter (the primary sites for sorption), and physical alteration of soil, thereby changing flow patterns and bypassing sorption sites (LaGrega et al., 1994). The volume percent of a chemical is calculated by dividing the chemical concentration in groundwater by the specific gravity of that chemical. The volume percent of organic chemicals at the Orlando site ranges from 0.0000003% to 0.00068%, which is far less than the 10-20% required for cosolvency (Schwarzenbach et al. 1993). Therefore in Orlando groundwater, the potential for co-solvency is negligible, due to the relatively low concentrations of the COC cosolvents.

#### 6.5 Site Inspection

Inspections at the site within the last nine months were conducted in April and September 2002 by TASK Environmental. Each of the inspections was conducted as part of routine O&M activities and included measuring water levels, monitoring well sampling, mowing, and fence maintenance.

#### 6.5.1 Access and Institutional Controls

The site is accessible by vehicle or pedestrian through a gate located on its east side off Orange Blossom Trail. The gate is locked at all times. Current access and institutional controls are effective in maintaining site integrity and preventing vandalism. No activities were observed during any of the recent site visits. There was no evidence of well tampering, following the vandalism of MW-13 in 1997.

#### 6.5.2 General Site Conditions

Equipment and materials located at the site consist of an aluminum utility shed, carbon treatment drums, and two high density polyethylene (HDPE) containers used to collect purge water for treatment. No other equipment, documentation, supplies, permits, records, plans, or other information are located on-site.

#### 6.5.3 Groundwater Remedies

On- and off-site monitoring wells were located during the site inspection, their water levels were recorded, and the wells sampled per the MNA analytical plan (Table 4-1). Each well is clearly marked and easily accessible.

#### 6.5.4 Overall Observations

Based on site inspections and O&M activities conducted in 2002, the monitoring well network at the Orlando site appears to be operating as intended.

#### 7 Technical Assessment

## 7.1 Question A: Is the remedy functioning as intended by the decision documents?

Review of the historic documentation, applicable or relevant and appropriate requirements (ARARs), risk assumptions, and the monitoring results indicates that the remedy for groundwater is functioning as intended by the ROD. Biannual monitoring confirms that the selected remedy (MNA) continued to successfully manage residual risk associated with groundwater COCs.

Based on historic trends and the identification of COC daughter products in site groundwater, it is apparent that COC attenuation is occurring. The mass of COCs in groundwater is decreasing at a rate of ~10% per annum. Natural attenuation continues to be a viable alternative to reach remedial protectiveness goals because COCs are not migrating to off-site locations. The MNA sampling program should be optimized based on the historic trends observed.

Institutional controls that are in place include a fence around the perimeter of the site and a deed restriction barring use of groundwater on site. No activities have been observed that would have violated the institutional controls. The fence around the site is intact and in good repair.

7.2 Question B: Are the exposure assumptions, toxicity data, cleanup levels, and remedial action objectives used at the time of the remedy still valid?

The 5-year review includes a review of the exposure assumptions, toxicity data, cleanup levels, and remedial action objectives that were incorporated into the ROD. The primary objective of this review is to determine whether these assumptions, data, and objectives are still protective of human health and the environment. For example, a change in land use or new toxicological findings could theoretically render the selected remedy no longer sufficiently protective.

An institutional control prohibiting onsite residential land use on the site was implemented since completion of the ROD. Since residential land use is no longer considered a possibility, and the baseline RA considered residential uses (e.g. drinking

water uses), the exposure assumptions and remedial action objectives used in the ROD are still protective of potential land uses at the site.

Changes in the toxicity assumptions have occurred for two COCs, chlordane and lindane. For chlordane, both the oral Reference Dose (RfD) and oral slope factor have been revised since the data of the ROD. The RFD of 6E-05 mg/kg-day has been replaced by an RFD of 5E-04 mg/kg-day, and the oral slope factor has changed from 1.3E+00 (mg/kg-day)-1 to 3.5E-01 (mg/kg-day)-1. The new criteria are less restrictive than the old ones; the assumptions used in the ROD are therefore still protective.

The carcinogen classification for lindane has been revised. Lindane was previously classified as a probable human carcinogen. The EPA concluded in a recent risk assessment (<a href="http://www.epa.gov/pesticides/lindane.htm">http://www.epa.gov/pesticides/lindane.htm</a>) that there is insufficient evidence to determine whether lindane would cause cancer in humans. The cancer classification "suggestive evidence of carcinogenicity, but not sufficient to assess human carcinogenicity potential" means that EPA does not have to quantify cancer risks posed by the pesticide in a risk assessment. Since lindane was evaluated as a carcinogen in the risk assessment used as the basis for the ROD, the assumptions in the ROD are still protective.

#### Changes in Standards and TBCs

Compliance standards for ethylbenzene and xylene were modified from their ROD cleanup standards to their MCL's (700  $\mu$ g/l and 10,000  $\mu$ g/l, respectively) in 2000. Otherwise, there have been no changes in standards used to generate cleanup levels in the ROD.

Most of the standards generated in the ROD were based on the future residential land use scenario in the BRA. Some groundwater standards were selected based on Federal MCLs and are the same today as they were at the time of the ROD generation.

Federal ARARS for groundwater that still must be met at this time and that have been evaluated include National Drinking Water Regulations (40 CFR Parts 131-144). State ARARs that still need to be met at this time and that have been evaluated include the Florida MCLs defined in FAC 62-550. To-Be-Considered (TBCs) Documents for the site include the USEPA's Drinking Water Regulations and Health Advisories (1993).

#### Changes in Exposure Pathways and Risk Assessment Methodologies

The BRA reviewed several potential exposure scenarios for the site: current industrial or site visitor scenarios, and future hypothetical residential scenario. The BRA concluded that under current scenarios, the exposure pathway that exceeded the EPA's acceptable cancer risk (10<sup>-6</sup>) was ingestion of groundwater for the future resident scenario. Hence, based on the results of the BRA, the medium of concern for remedial action was groundwater.

There have been no changes in the exposure pathways conservatively assumed in the BRA.

#### Changes in Toxicity and Other Contaminant Characteristics

There have been no changes in the toxicity factors for the COCs that were used in the BRA that would call into question the selected remedies.

#### **Expected Progress Towards Meeting RAOs**

The remedy is progressing as expected.

7.3 Question C: Has any other information come to light that could call into question the protectiveness of the remedy?

No other information has been presented that could call into question the protectiveness of the remedy.

#### 7.4 Technical Assessment Summary

According to the data reviewed, the remedy is functioning as intended by the ROD. Except for revision of the ethylbenzene and xylene cleanup standards to match Federal MCLs, there have been no changes in standards, exposure pathways, risk assessment methodology, or the toxicity factors for COCs that were used in the BRA, and there is no other miscellaneous information that calls into question the protectiveness of the remedy.

#### 8 Issues

The efficacy of the monitored natural attenuation remedy requires future verification until ROD compliance has been attained.

Meeting strict numeric groundwater standards at this site by any remedial method is complicated because 1) all residual soil sources cannot be identified due to constraints imposed by analytical method detection limits (MDLs; e.g.,  $\alpha$ -BHC in Figure 8-1); 2) the groundwater cleanup goals are also at MDLs, resulting in poor discriminatory ability between detection limits and low-level occurrences; and 3) BHC isomers with ROD cleanup standards (i.e.,  $\alpha$ -,  $\beta$ -, and  $\gamma$ -BHC) may isomerize among one another, and to and from an unregulated isomer ( $\delta$ -BHC).

## 9 Recommendations and Follow-up Actions

In lieu of numerical standards, a continued monitoring approach is proposed for the next five-year period to ensure that groundwater COCs do not threaten Lake Fairview or result in unacceptable risk to human health and the environment under future land use scenarios.

## 9.1 Monitoring On-Site Wells

Total BHC mass is an appropriate metric for evaluating natural attenuation (rather than individual isomers) due to isomerization. This method would be applied by summing the groundwater BHC concentrations (including δ-BHC). The current on-site network of monitoring wells will be analyzed in the Spring and Fall of the second and fourth years of the next five-year period to quantify BHC mass reduction. The monitoring well samples will be analyzed for chlorinated pesticides by EPA Method 8081. In addition, samples from the MW-4 cluster will be analyzed for purgeable aromatic compounds by EPA Method 8021 in Spring and Fall of the fourth year.

The analytical list for on-site monitoring wells remain the same as the current analytical plan (Table 9-1).

# 9.2 Monitoring Off-Site Wells

Monitor well cluster MW-2 and wells MW-12 and MW-15 will be monitored for BHC compounds (EPA Method 8081) in the Spring and Fall of the second and fourth years of the next five-year period. In the event that there is a COC detection in MW-15 (the sentinel well closest to site), MW-11, MW-12, and MW-15 wells will be sampled again within three months. If these confirmation analyses are below detection limits, annual sampling will resume. The samples form MW-2D collected in the fourth year will be analyzed for purgeable aromatic compounds by EPA Method 8021.

MW-1S and MW-1D will be sampled annually in the Spring and Fall for BHCs (MW-1S and MW-1D) and benzene (MW-1D).

#### 10 Protectiveness Statement

The remedy is expected to be protective of human health and the environment upon attainment of groundwater cleanup goals, through natural attenuation. In the interim, exposure pathways that could result in unacceptable risks are being controlled and institutional controls are preventing exposure to, or the ingestion of, groundwater. All threats at the site have been addressed through excavation of soil, installation of fencing, and implementation of institutional controls. Long-term protectiveness of the remedial action will be verified by sampling of on- and off-site monitoring wells according to the recommended sampling and analytical plan (Section 9). Current monitoring data indicate that the remedy is protective of human health and the environment.

#### 11 Next Review

The next five-year review for the Chevron Orlando site is required by December 2007, five years from the date of this review.

### 12 References

- Adhya, T.K., S.K. Apte, K. Raghu, N. Sethunathan, N.B.K. Murthy. 1996. Novel polypeptides induced by the insecticide lindane are required for its biodegradation by a Sphingomonas psucimobilis strain. Biochemical and Biophysical Research Communications, 221: 755-761.
- Aislable, J. and Lloyd-Jones, G. 1995. A review of bacterial degradation of pesticides. Australian Journal of Soil Research, 33: 925-942.
- Bachmann, A., Walet, P., Wijnen, P., de Bruin, W., Huntjens, J.L.M., Roelofsen, W. and Zehnder, A.J.B. 1988. Biodegradation of alpha- and beta-hexachlorocyclohexane in a soil slurry under different redox conditions. *Applied Environmental Microbiology*, 54: 143-149.
- Baedecker, M. J. and Back, W. 1979. Hydrogeological processes and chemical reactions at a landfill. *Groundwater*, 17: 429-437.
- Beller, H.R., W. Ding, and M. Reinhard. 1995. Byproducts of anaerobic alkylbenzene metabolism useful as indicators of in situ bioremediation. *Environmental Science and Technology*, **29**(11): 2864-2870.
- Black & Veatch. 1995. Baseline risk assessment for Chevron Orlando site, Orlando, Florida. Conducted for the U.S. Environmental Protection Agency, Region IV.
- Brown & Caldwell Consultants (BCC). 1990. Contamination assessment for the Chevron Chemical Company site (USEPA Docket No. 90-37-C), Orlando, Florida. Prepared for Chevron Chemical Company.
- BCC. 1991. Removal action plan for the Chevron Chemical Company site, Orlando, Florida. July 1991. Prepared for Chevron Chemical Company.
- BCC. 1992. Removal action report for the Chevron Chemical Company site, Orlando, Florida. December 1992. Prepared for Chevron Chemical Company.
- Chapelle, F.H., S.K.Haack, P. Adriaens, M.A. Henry, and P.M. Bradley. 1996.

  Comparison of E<sub>h</sub> and H<sub>2</sub> measurements for delineating redox processes in a contaminated aquifer. *Environmental Science and Technology*, 30: 3565-3569.
- Davis A., Kempton J.H., Nicholson A., and Yare B. 1994. Groundwater transport of arsenic and chromium at a historical tannery, Woburn, Massachusetts, U.S.A. *Applied Geochemistry*, 9(4): 569-582.

- Deo, P.G., N.G. Karanth, and N.G.K. Karanath. 1994. Biodegradation of hexachlorocyclohexane isomers in soil and food environment. *Critical Reviews in Microbiology*, **20**(1): 57-78.
- EPA. 1996. Record of Decision (ROD). Issued by EPA to Chevron on May 22, 1996.
- EPA. 1997. Draft EPA Region 4 suggested practices for evaluation of a site natural attenuation (biological degradation) of chlorinated solvents, Version 3, November 1997.
- Exponent. 1998. Groundwater Data Analysis and Supplemental Groundwater Modeling, Chevron Orange Blossom Trail Site, Orlando, Florida.
- F.A.C. Rules 62-4.246 Sampling, Testing Methods, and Method Detection Limits for Water Pollution Sources.
- Geomega. 1999. Comprehensive Data Review & Hydrogeochemical Conceptualization of the Chevron Orlando Site. Prepared for Chevron Chemical Company, September 16, 1999.
- Geomega. 2000a. Fall 1999 Groundwater Sampling Report, Chevron Orlando, Florida Site. March 2000.
- Geomega. 2000b. Spring 2000 Groundwater Sampling Report, Chevron Orlando, Florida Site. September 20, 2000.
- Geomega. 2000c. Plume Stability: A Computational Interpretation Using the Center of Mass Technique. February 3, 2000.
- Geomega. 2000d. BHC in Chevron Orlando Groundwater: Evidence for Plume Attenuation and Stability. December 13, 2000.
- Geomega. 2001a. Fall 2000 Groundwater Sampling Report, Chevron Orlando, Florida Site. February 9, 2001.
- Geomega. 2001b. Spring 2001 Groundwater Sampling Report, Chevron Orlando, Florida Site. July 2, 2001.
- Geomega. 2002a. Fall 2001 Groundwater Sampling Report, Chevron Orlando, Florida Site. January 22, 2002.
- Geomega. 2002b. Spring 2002 Groundwater Sampling Report, Chevron Orlando, Florida Site. August 5, 2002.
- Huhnerfuss, H., J. Faller, W.A. Konig, P. Ludwig. 1992. Gas chromatographic separation of the enantiomers of marine pollutants. 4. Fate of hexachlorocyclohexane isomers in the Baltic and North Sea. *Environmental Science and Technology*, **26**: 2127-2133.

- Jagnow, G., K. Haider, and P. Ellwardt. 1977. Anaerobic dechlorination and degradation of hexachlorocyclohexane isomers by anaerobic and facultative anaerobic bacteria. *Archives of Microbiology*, **115**: 285-292.
- Kelly, W.R., J.S. Herman, and A.L. Mills. 1997. The geochemical effects of benzene, toluene, and xylene (BTX) biodegradation. *Applied Geochemistry*, 12: 291-303.
- McRae, I.C. 1989. Microbial metabolism of pesticides and structurally related compounds. Reviews of Environmental Contamination and Toxicology, 109: 1-87.
- Schwarzenbach, R.P., P.M. Gschwend, D.M. Imboden. 1993. Environmental Organic Chemistry, John Wiley & Sons, Inc. 681 p.
- TASK. 1994. Remedial Action Report Amendment (RARA) for the Chevron Chemical Site, Orlando, Florida.
- TASK/PTI. 1994a. Remedial Investigation, superfund accelerated cleanup model, Chevron Chemical Site, Orlando, Florida. Prepared for Chevron Chemical Company.
- TASK/PTI. 1994b. Feasibility Study, Chevron Chemical Site, Orlando, Florida. Prepared for Chevron Chemical Company.
- TASK. 1997. Remedial Design / Remedial Action Work Plan, Chevron Chemical Site, Orlando, Florida. Prepared for Chevron Chemical Company.
- Van Eekert, M.H.A., N.J.P. Van Ras, G.H. Mentink, H.H.M. Rijnaarts, A.J.M. Stams, J.A. Field, and G. Schraa. 1998. Anaerobic transformation of β-hexachlorocyclohexene by methanogenic granular sludge and soil microflora. *Environmental Science and Technology*, 32: 3299-3304.
- World Bank Group. 1997. Pollution Prevention and Abatement Handbook, Part III, Pesticide Formulation Chapter.

Table 2-1. Chronology of Chevron Orlando site events

| Site Construction by Chevron Chemical Company (CCC)                                                                                                                                                                                                                                                                                        | 1950        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| CCC removed chemical Inventory, drained equipment lines, and backfilled rinsate ponds with soll.                                                                                                                                                                                                                                           | 1976        |
| Mr. Uttal purchased the site from CCC and began operation of Central Florida Mack Trucks, removed pesticide formulating equipment and leftover drums from site, washed interior of building with scapy water rinse, and capped rinsate pond area with concrete.                                                                            | 1978        |
| Darnes & Moore contracted by CCC to conduct initial soll and groundwater investigation at the site.                                                                                                                                                                                                                                        | 1981 – 1982 |
| Explosion near west rinsate pond from leaking hydrochloric/nitric acid tanker truck.                                                                                                                                                                                                                                                       | Mar-84      |
| Trucking service operations discontinued.                                                                                                                                                                                                                                                                                                  | Nov-86      |
| Jammal & Associates retained by Southeastern investment Properties to conduct property transfer assessment of the site.                                                                                                                                                                                                                    | Jan-87      |
| Mr. Uttal leased property to Mr. Richard Keating. Property used as a vehicle storage area.                                                                                                                                                                                                                                                 | 1987 - 1988 |
| Screening Site Inspection (under CERCLA) by NUS Corporation                                                                                                                                                                                                                                                                                | May-89      |
| Administrative Order of Consent (AOC) issued by U.S. EPA to Chevron Chemical Company and Mr. Robert Ultal to conduct cleanup at the site. (EPA Docket # 90-37-C).                                                                                                                                                                          | 5/15/90     |
| Contamination Assessment Report issued by Brown and Caldwell Consultants (BCC)                                                                                                                                                                                                                                                             | Dec-90      |
| Fire destroys pesticide formulating/warehouse building.                                                                                                                                                                                                                                                                                    | Mar-91      |
| Removal Action Plan (RAP) developed by BCC.                                                                                                                                                                                                                                                                                                | Jul-91      |
| On-site Removal Action resulting in all site structures demollshed and removed, 90 to 100 gallons of free-product removed from subsurface soit, 17,780 tons of pesticide contaminated soit removed, 4,900 tons of petroleum hydrocarbon contaminated soil removed, 126,000 gallons of groundwater removed and treated with 5-step process. | 2/92 – 9/92 |
| Removal Action Report by BCC.                                                                                                                                                                                                                                                                                                              | Dec-92      |
| CCC purchased the site in foreclosure from First Union Bank.                                                                                                                                                                                                                                                                               | 1993        |
| CCC voluntarily entered into another AOC with EPA to conduct a Remedial Investigation and Feasibility Study (RI/FS) in accordance with the Superfund Accelerated Cleanup Model (SACM) to assess the potential soll contamination both on-site and at the Armertong Trailer Park north of the site (EPA Dockel #92-46-C).                   | 1/25/93     |
| Groundwater sampling (Phase I) of on-site and off-site monitor wells and surface soil sampling (Phase II) at Armstrong Trailer Park by PTI Environmental Services.                                                                                                                                                                         | 4/93 - 9/93 |
| Additional surface soil sampling (Phase II) at Armstrong Trailer Park by PTI Environmental Services.                                                                                                                                                                                                                                       | Nov-93      |
| CCC purchased the site in foreclosure from Resolution Trust Company.                                                                                                                                                                                                                                                                       | 1994        |
| Site added to National Priorities List (NPL) by EPA.                                                                                                                                                                                                                                                                                       | 1/19/94     |
| Removal Action Plan Ammendment (RAPA) by TASK Елvironmental                                                                                                                                                                                                                                                                                | Mar-94      |
| Soil Removal Action at Armstrong Tailer Park north of site by TASK Environmental- 230 tons of pesticide contaminated soil removed (Chiordane > 4.9 mg/kg).                                                                                                                                                                                 | 3/94 4/94   |
| Removal Action Report Ammendment (RARA) by TASK Environmental                                                                                                                                                                                                                                                                              | Jul-94      |
| Baseline Risk Assessment by Black & Veatch Waste Science.                                                                                                                                                                                                                                                                                  | 9/29/94     |
| Remedial Investigation (RI) Report by TASK Environmental and PTI Environmental Services.                                                                                                                                                                                                                                                   | Nov-94      |
| Feasibility Study (FS) Report by TASK Environmental and PTt Environmental Services.                                                                                                                                                                                                                                                        | Dec-94      |
| Record of Decision (ROD) issued by EPA (EPA/ROD/RO4/-96/263). Groundwater remedy to be monitored natural attenuation (MNA). No Further Action necessary to protect human health from exposure to soil on site or at Armstrong Trailer Park.                                                                                                | 5/22/96     |
| Unilateral Administrative Order (UAO) issued by EPA for CCC to implement ROD.                                                                                                                                                                                                                                                              | Jul-97      |
| Final monitoring well duster installed                                                                                                                                                                                                                                                                                                     | Oct-97      |
| Groundwater Data Analysia and Supplemental Groundwater Modeling by Exponent                                                                                                                                                                                                                                                                | Dec-98      |
| Comprehensive Data Review and Hydrogeochemical Conceptualization of the Chevron Orlando Site by Geomega                                                                                                                                                                                                                                    | Sep-99      |
| Evidence for Plume Attenuation and Stability report by Geomega                                                                                                                                                                                                                                                                             | Dec-00      |
| Five-Year Review for the Orlando site by Geomega                                                                                                                                                                                                                                                                                           | Oct-02      |

Table 4-1. Sampling and Analytical Plan Summary for the Chevron Orlando Site (1997 to 2002)

|        |       |                          |         | 6         | Spring Sampl | Sampling Event |                         |              |                          |                |                            | Fall San | Fall Sampling Event     | 1                        |                          |
|--------|-------|--------------------------|---------|-----------|--------------|----------------|-------------------------|--------------|--------------------------|----------------|----------------------------|----------|-------------------------|--------------------------|--------------------------|
|        |       |                          |         | Volitie   |              | Oroano-        | Semi -<br>Volitile      |              | Alkalinity,<br>TOC, BOD, |                |                            |          | Volitile                |                          | Alkalinity,<br>TOC, BOD, |
|        |       | Conductivity,            | HACH    | Organic   | Chlorinated  | phosphorus     | Organic                 | Metals       | •                        |                | Conductivity.              | HACH     | Organic                 | Chlorinated              | COD, Nitrate,            |
| OI III | Water | Temperature,<br>oH Eh DO | Ferrous | Chemicals | Pesticides   | Pesticides     | Chemicals<br>(FPA 8270) | As, Cr, Pb** | Sulfate,<br>Sulfide      | Water<br>Level | Temperature,<br>off Eth DO | Ferrous  | Chemicals<br>(FPA 8021) | Pesticides<br>(FPA 8081) | Sulfate,<br>Sulfide      |
| MW-1S  |       |                          | 0       | 0         | 0            | ×              | ×                       | 0            | ×                        | ٥              | •                          | •        | ٥                       |                          | ×                        |
| MW-1D  | 0     | D                        | ¢       | 0         | 0            | ×              | ×                       | 0            | ĸ                        | 0              | ¢                          | 0        | o                       | a                        | ×                        |
| MW-2S  | 0     | Ċ                        | Φ       | ×         | Þ            | к              | ×                       | 0            | ×                        | 0              | D                          | ٥        | ×                       | ٥                        | ×                        |
| MW-2D  | 0     | ٥                        | •       | ×         | ۵            | ×              | ×                       | o            | ×                        | o              | Đ                          | Đ        | ×                       | ٥                        | ×                        |
| MW-3S  | D     | 0                        | 0       | ņ         | 0            | ×              | ×                       | 0            | *                        | 0              | Ċ                          | 0        | 0                       | 0                        | ×                        |
| MW-3D  |       | 0                        | 0       | 6         | ٥            | ×              | ×                       | ٥            | ×                        | ٥              | ٥                          | ø        | ٥                       | ó                        | ×                        |
| MW-4S  | ٥     | 0                        | o       |           | 0            | ×              | ×                       | a            | ×                        | ۵              | 0                          | o        | ø                       | ٥                        | ×                        |
| MW-40  | ٥     | 0                        | Þ       | ø         | •            | ×              | ×                       | ۵            | ×                        | ۵              | ٥                          | o        | 0                       | ٥                        | ×                        |
| MW-5S  | ¢     | 0                        | 0       | ×         | o            | ×              | ×                       | 0            |                          | 6              | 0                          | 0        | ×                       | ¢                        | ×                        |
| MW-5D  | 0     | D                        | o       | ×         | 0            | ×              | ×                       | 0            |                          | ۰              | 0                          | ٥        | ×                       | 6                        | ×                        |
| MW-6S  | 0     | ×                        | ×       | ×         | ×            | ×              | ×                       | ×            |                          | 0              |                            |          |                         |                          |                          |
| MM-6D  | c     | ×                        | ×       | ×         | ×            | ×              | ×                       | ×            |                          | ٥              |                            |          |                         |                          |                          |
| MW-7S  | _     | Ď                        | ٥       | 0         | ×            | ×              | ×                       | ×            | ×                        | 0              |                            |          |                         |                          |                          |
| MW-70  | •     | o                        | 0       | 0         | ×            | ×              | ×                       | ×            | ×                        | c              |                            |          |                         |                          |                          |
| MW-8S  | ۰     | 0                        | ٥       | ×         | ٥            | ×              | ×                       | 0            | ×                        | ٥              | ٥                          | ٥        | ×                       | 0                        | ×                        |
| MW-8D  | ۰     | •                        | 0       | ×         | ٥            | ×              | ×                       | Φ            | ×                        | ¢              | 0                          | ٥        | ×                       | c                        | ×                        |
| MW-9D  | ۰     | 0                        | 0       | ۵         | 0            | ×              | ×                       | 0            | ×                        | ۰              | •                          | Ω        | ۵                       | o                        | ×                        |
| MW-10S | ۰     | 0                        | ٥       | 0         | 0            | ×              | ×                       | 0            | ×                        | •              | •                          | 0        | 0                       | ¢                        | ×                        |
| MW-10D | ۰     | o                        | ٥       | a         | o            | ×              | ×                       | 0            | ×                        | •              | ٥                          | •        | D                       | D                        | ×                        |
| MW-11  | ۰     | ×                        | ×       | к         | ×            | ×              | ×                       | ×            | ×                        | 0              |                            |          |                         |                          |                          |
| MW-12  | •     | Q                        | ۵       | ×         | ņ            | ×              | ×                       | 0            | ×                        | •              |                            |          |                         |                          |                          |
| MW~15  | -     | ¢                        | 0       | 0         | 0            | ×              | ×                       | a            | ×                        | ā              | a                          | a        | a                       | ٥                        | ×                        |
| MW-16S | •     | ٥                        | 0       | 0         | 0            | ×              | ×                       | p            |                          |                | 0                          | D        | ٥                       | ٥                        |                          |
| MW-16D | ۰     | 0                        | 0       | o         | D            | ×              | ×                       | a            |                          | a              | a                          | ٥        | •                       | o                        |                          |
| MW-17  | ۰     | ٥                        | c       | c         | 0            | ×              | ×                       | o            |                          | ٥              | 0                          | Φ        | o                       | q                        |                          |
| MW-A   | 0     |                          |         |           |              |                |                         |              |                          | ٥              |                            |          |                         |                          |                          |
| MW-0   | ٥     | 0                        |         | ٥         | ×            | ×              | ×                       | ×            | ×                        | ٥              |                            |          |                         |                          |                          |

o = retaired analyses after 2000
x = eliminated analyses after 2000
Blank = not analyzed
•VOCs - only purgeable aromatics (e.g. bertzene), not purgeable halocarbons
%6010 - after 2000 analyzed for Cr and Pb only (not As)

Table 6-1. Pesticide Concentrations in Soils at Chevron Orlando, Florida

| Sample ID    | Duplicate | Upper Depth<br>(Feet) | Lower Depth<br>(Feet) | Excavation Depth<br>(Feet) | Total -Chlordane<br>(mg/Kg) | alpha-BHC<br>(mg/Kg) | реtа-ВНС<br>(тд/Кд) | gamma-BHC<br>(mg/Kg) | delta-BHC<br>(mg/Kg) |
|--------------|-----------|-----------------------|-----------------------|----------------------------|-----------------------------|----------------------|---------------------|----------------------|----------------------|
| CO-EC-1-01   |           | -                     | 2                     | 1                          | 30                          | <2                   | <2                  | 42                   | <2                   |
| CO-EC-10-01  |           | -                     | 2                     | -                          | 23                          | <0.2                 | <0.2                | <0.2                 | <0.2                 |
| CO-EC-11-01  |           |                       | 2                     | 1                          | 8.3                         | <0.2                 | <0.2                | <0.2                 | <0.2                 |
| CO-EC-12-01  |           | 9                     | 7                     | 9                          | 85                          | <2                   | <2                  | ۵                    | 7                    |
| CO-EC-13-01  |           | ę                     | 7                     | 9                          | 59                          | 42                   | \$                  | 2                    | <2                   |
| CO-EC-14-01  |           | _                     | 2                     | 1                          | 43                          | <2                   | <2                  | <2                   | 7                    |
| CO-EC-15-01  |           | g                     | 7                     | 9                          | 27                          | 4                    | 7                   | <2                   | 7                    |
| CO-EC-16-01  |           | 9                     | 7                     | 9                          | 23                          | ₹                    | <2                  | <2                   | - 2                  |
| CO-EC-17-01  | _         | g                     | 7                     | 9                          | 32                          | 42                   | <2                  | <2                   | <2                   |
| CO-EC-2-01   |           | -                     | 2                     | <del>-</del>               | 200                         | <2                   | Ø                   | <2                   | <2                   |
| CO-EC-20-01  |           | 9                     | 7                     | 9                          | 24                          | <0.2                 | <0.2                | <0.2                 | 6.0                  |
| CO-EC-21-01  |           | 9                     | 7                     | 9                          | 4                           | <0.2                 | <0.2                | <0.2                 | <0.2                 |
| CO-EC-22-01  |           | 9                     | 7                     | 9                          | 9.3                         | <0.4                 | <0.4                | <0.4                 | <0.4                 |
| CO-EC-23-01  |           | -                     | 2                     | -                          | 4.2                         | <0.4                 | <0.4                | <0.4                 | <0.4                 |
| CO-EC-24-01  |           | -                     | 2                     | -                          | 16                          | 7                    | <2                  | <2                   | <2                   |
| CO-EC-25-01  |           | -                     | 2                     | 1                          | 2.5                         | <0.2                 | <0.2                | <0.2                 | <0.2                 |
| CO-EC-26-01  |           | -                     | 2                     | 1                          | 1                           | <0.2                 | <0.2                | <0.2                 | <0.2                 |
| CO-EC-27-01  |           | -                     | 2                     | <b>-</b>                   | 23                          | <0.4                 | <0,4                | <0.4                 | <0.4                 |
| CO-EC-28-01  |           | -                     | 2                     | 1                          | 87                          | 3                    | 1.6                 | 1.1                  | 2.3                  |
| CO-EC-3-01   |           | -                     | 7                     | 1                          | 110                         | 42                   | 42                  | <2                   | <2                   |
| CO-EC-31-01  |           | _                     | 2                     | 1                          | 0.45                        | <0.04                | <0.04               | <0.04                | <0.04                |
| CO-EC-31D-01 |           | 1                     | 2                     | 1                          | 0.64                        | <0.04                | <0.04               | <0.04                | <0.04                |
| CO-EC-34-02  |           | -                     | 2                     | 1                          | 29                          | <0.8                 | <0.8                | <0.8                 | <0.8                 |
| CO-EC-35-02  |           | _                     | 2                     | 1                          | 8.3                         | <1                   | · ·                 | ۲۷                   | ٧                    |
| CO-EC-36-02  |           | 2                     | က                     | 2                          | 13                          | <0.4                 | 0.93                | <0.4<br>4            | <0.4                 |
| CO-EC-37-02  |           | 2                     | 3                     | 2                          | 16                          | ٧                    |                     | ۲۷                   | ٧                    |
| CO-EC-39-03  |           | 2                     | က                     | 2                          | 17                          | <0.8                 | €0.8                | <0.8                 | <0.8                 |
| CO-EC-4-01   |           | -                     | 2                     | Ļ                          | 21                          | <0.2                 | <0.2                | <0.2                 | <0.2                 |
| CO-EC-40-03  |           | 2                     | 3                     | 2                          | 350                         | ♡                    | 0                   | <2                   |                      |
| CO-EC-41-03  |           | 2                     | 3                     | 2                          | 5                           | <0.2                 | <0.2                | <0.2                 | <0.2                 |
| CO-EC-43-01  |           | 10                    | 11                    | 10                         | 0.92                        | <0.1                 | <0.1                | <0.1                 | <0.1                 |
| CO-EC-44-01  |           | 10                    | 11                    | 10                         | 0.43                        | <0.004               | <0.004              | <0.004               | <0.004               |
| CO-EC-45-01  | -         | 10                    | 11                    | 10                         | 2.7                         | <0.4                 | <0.4                | <0.4                 | <0.4                 |
| CO-EC-46-01  |           | 10                    | 11                    | 10                         | - 29                        | 7                    | 7                   | \$                   | 2.3                  |
| CO-EC-47-03  |           | 10                    | 7                     | 10                         | 16                          | 0.5                  | <0.2                | 0.3                  | 0.87                 |
| CO-EC-48-03  |           | 10                    | 7                     | 10                         | 57                          | 2                    | <0.4                | 2.5                  | 3.2                  |
| CO-EC-49-03  |           | 10                    | 7                     | 9                          | 140                         | 4                    | ₹                   | 4                    | 5.5                  |

Table 6-1. Pesticide Concentrations in Soils at Chevron Orlando, Florida

| Sample ID Duplicate | Jpper Depth<br>(Feet) | Lower Depth<br>(Feet) | Excavation Depth   Total -Chlordane (Feet) (mg/kg) | Total -Chlordane<br>(mg/Kg) | alpha-BHC<br>(mg/Kg) | beta-BHC<br>(mg/Kg) | gamma-BHC<br>(mg/Kg) | delta-BHC<br>(mg/Kg) |
|---------------------|-----------------------|-----------------------|----------------------------------------------------|-----------------------------|----------------------|---------------------|----------------------|----------------------|
| CO-EC-501           | -                     | 2                     |                                                    | 12                          | <b>~</b>             | 7                   | <2>                  | <2                   |
| CO-EC-30-03         | 9                     | 7                     | 10                                                 | 1                           | <0.08                | <0.08               | <0.08                | 80.0>                |
| CO-EC-51-03         | 10                    | £                     | 10                                                 | 9.2                         | <0.2                 | <0.2                | <0.2                 | 0.22                 |
| CO-EC-52-03         | 4                     | 5                     | 4                                                  | 20                          | <0.4                 | <0.4                | <0.4                 | <0.4                 |
| CO-EC-53-03         | 10                    | 11                    | 10                                                 | 20                          | 8.0>                 | <0.8                | <0.8                 | <0.8                 |
| CO-EC-54-03         | 9                     | 7                     | မ                                                  | 85                          | <0.8                 | <0.8                | <0.8                 | 1.8                  |
| CO-EC-55-03         | 9                     | 2                     | 9                                                  | 17                          | <0.4                 | <0.4                | <0.4                 | <0.4                 |
| CO-EC-56-03         | 9                     |                       | 9                                                  | 08                          | <4                   | 44                  | <4                   | 4.7                  |
| CO-EC-57-03         | 9                     |                       | 9                                                  | 190                         | <20                  | <20                 | <20                  | <20                  |
| CO-EC-58-03         | 9                     |                       | 9                                                  | 0.28                        | <0.04                | <0.04               | <0.04                | <0.04                |
| CO-EC-59-03         | 9                     | 7                     | 9                                                  | 180                         | 44                   | <b>b&gt;</b>        | 6.7                  | 8.3                  |
| CO-EC-6-01          | <u>-</u>              | 2                     | -                                                  | 120                         | ۲                    | \$                  | ٧                    | 8                    |
| CO-EC-60-03         | 9                     | 7                     | 9                                                  | 0.048                       | <0.004               | <0.004              | <0.004               | 0.014                |
| CO-EC-61-03         | 9                     | <del>-</del>          | 10                                                 | 3.2                         | <0.4                 | <0.4                | <0.4                 | <0.4                 |
| CO-EC-62-03         | 4                     | 5                     | 4                                                  | 2                           | <0.08                | <0.08               | <0.08                | <0.08                |
| CO-EC-65-01         | -                     | 2                     | 1                                                  | 110                         | <0.8                 | <0.8                | <0.8                 | <0.8                 |
| CO-EC-66-01         | _                     | 2                     | -                                                  | 180                         | <2                   | <b>~</b>            | <2                   | <2                   |
| CO-EC-67-01         | -                     | 2                     | -                                                  | 18                          | 42                   | <2                  | <2                   | <2                   |
| CO-EC-68-01         | _                     | 2                     | -                                                  | 240                         | <4                   | 4>                  | 44                   | <b>4</b> >           |
| CO-EC-69-01         | -                     | 2                     | 1                                                  | 18                          | 2                    | <2                  | <2                   | 7                    |
| CO-EC-7-01          | -                     | 2                     | 1                                                  | 75                          | <2                   | <2                  | 7                    | ♡                    |
| CO-EC-71-01         | 1                     | 2                     | 1                                                  | 0.38                        | <0.04                | <0.04               | <0.04                | <0.04<br>40.04       |
| CO-EC-72-03         | 1                     | 8                     |                                                    | 86                          | 12                   | 2.4                 | 14                   | 7.5                  |
| CO-EC-73-03         | 10                    | 11                    | 10                                                 | 7.3                         | <0.4                 | <0.4                | <0.4                 | <0.4                 |
| CO-EC-74-03         | 10                    | 11                    | 10                                                 | 3.2                         | <0.4                 | 4.0>                | <0.4                 | <0.4                 |
| CO-EC-75-03         | 10                    | 11                    | 10                                                 | 0.83                        | <0.2                 | <0.2                | <0.2                 | <0.2                 |
| CO-EC-76-03         | 10                    | 11                    | 10                                                 | 95                          | ۲۷                   | ₹                   | ⊽                    | 1.3                  |
| CO-EC-77-01         | 0                     | ٦ ،                   | 0                                                  | 3.3                         | <0.08                | <0.08               | <0.08                | <0.08                |
| CO-EC-78-01         | Q                     | 1                     | 0                                                  | 0.16                        | <0.004               | 0.0036              | <0.004               | 0.012                |
| CO-EC-79-01         | 0                     | -                     | 0                                                  | 1.7                         | <0.4                 | <0.4                | <0.4                 | <0.4                 |
| CO-EC-8-01          | ·-                    | 7                     | 1                                                  | 23                          | <0.4                 | <0.4                | <0.4                 | <0.4                 |
| CO-EC-80-01         | 0                     | -                     | 0                                                  | 3                           | <0.08                | 0.18                | <0.08                | <0.08                |
| CO-EC-81-01         | 0                     | 1                     | 0                                                  | 2.8                         | <0.4                 | <0.4                | <0.4                 | <0,4                 |
| CO-EC-82-01         | 0                     | 1                     | 0                                                  | 0.53                        | <0.02                | <0.02               | <0.02                | <0.02                |
| CO-EC-83-01         | 0                     | -                     | 0                                                  | _                           | <0.04                | 0.05                | <0.04<br>40.04       | ¢0.04                |
| CO-EC-84-01         | 0                     | 1                     | 0                                                  | 1.4                         | <0.4                 | <0.4                | <b>4.0</b> >         | 40.4                 |
| CO-EC-85-01         | ٥                     |                       | _                                                  | 4.7                         | 0000                 | 0000                | 00.00                | 0000                 |

Table 6-1. Pesticide Concentrations in Soils at Chevron Orlando, Florida

| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                   | (Feet) | (Feet) | (Feet) (mg/Kg) | (mg/Kg)  | (mg/Kg)      | gamma-title<br>(mg/Kg) | delta-BHC<br>(mg/Kg) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----------------|----------|--------------|------------------------|----------------------|
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                   | 1      | ( )    | (66)           | 200      | 9 9          | 2000                   | 7000                 |
| 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5        |        | 0      | 0.16           | <0.004   | cnn:n        | <0.004                 | <0.004               |
| 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5                  | -      | 0      | 0.088          | <0.004   | <0.004       | <0.004                 | <0.004               |
| 1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                      | 1      | 0      | 11             | <0.4     | <b>4</b> .0≻ | <0.4                   | <0.4                 |
| 1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1.5<br>1.5<br>1.5<br>1.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4 | 2      | 1      | 2.8            | <0.08    | <0.08        | <0.08                  | <0.08                |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                   | 2      | -      | 230            | <2       | <2           | <2                     | <2                   |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                   | -      | 0      | 3.9            | <0.4     | <0.4         | <0.4                   | <0.4                 |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                   | -      | 0      | 5.3            | <0.08    | 0.09         | <0.08                  | <0.08                |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                   | -      | 0      | 0.26           | 80·0>    | <0.08        | <0.08                  | <0.08                |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                   | -      | 0      | 20             | 1.1      | <0.4         | ,                      | 3.3                  |
| 1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5                                                                                                                    | 0.5    | 1      | 8.2            | 0.42     | 11           | 0.55                   | ` 10                 |
| 1.5<br>1.5<br>0<br>0<br>0<br>0<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4                                                 | 0.5    | 2      | 13             | <0.31    | 1.7          | <0.31                  | 2.5                  |
| 1.5<br>0<br>0<br>0<br>0<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5                                                             | 0.5    | 2      | 1400           | 2100     | 48           | 92                     | 130                  |
| 1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5                                                                                                                    | 2      | 2      | \$             | <17      | <17          | <17                    | <17                  |
| 1.5<br>0<br>0<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4                                                    | 0.5    | -      | 18             | <1.7     | <u> </u>     | <1.7                   | <1.7                 |
| 0<br>0<br>0<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5                                                           | 2      | -      | <0.68          | <0.34    | <0.34        | <0.34                  | <0.34                |
| 1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5                                                                                                      | 0.5    | ,      | <6.4           | <3.2     | <3.2         | <3.2                   | <3.2                 |
| 1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5                                                                                                      | 0.5    | -      | 160            | 72       | 81           | <59                    | 320                  |
| 1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5                                                                                        | 0.5    | 9      | 5.1            | <1.7     | <1.7         | <1.7                   | <1,7                 |
| 1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5                                                                                 | 2      | G      | 1.3            | <0.36    | 0.36         | <0.36                  | <0.36                |
| 1.5<br>1.5<br>1.5<br>1.5<br>7.5<br>7.5<br>4.5<br>4.5<br>4.5<br>4.5                                                                                                      | 2      | 9      | <14            | 6.9>     | <6.9>        | 69>                    | €.9                  |
| 1.5<br>1.5<br>1.5<br>7.5<br>7.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5                                                                                                      | 2      | 1      | 4.6            | <0.35    | <0.35        | <0.35                  | <0.35                |
| 1.5<br>1.5<br>4.5<br>7.5<br>4.5<br>4.5<br>4.5<br>4.5<br>7.5<br>7.5<br>7.5<br>7.5                                                                                        | 2      | -      | 73             | <0.36    | <0.36        | <0.36                  | <0.36                |
| 1.5<br>1.5<br>7.5<br>7.5<br>7.5<br>4.5<br>4.5<br>4.5<br>4.5<br>7.5<br>7.5                                                                                               | 2      | 1      | 2.0>           | <0.35    | <0.35        | <0.35                  | <0.35                |
| 1.5<br>4.5<br>7.5<br>7.5<br>4.5<br>4.5<br>4.5<br>4.5<br>7.5                                                                                                             | 2      | 2      | <0.74          | <0.37    | <0.37        | <0.37                  | <0.37                |
| 4.5<br>7.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>7.5                                                                                                             | 2      | 0      | 1100           | <35      | <35          | <35                    | <35                  |
| 7.5<br>4.5<br>7.5<br>4.5<br>4.5<br>4.5<br>7.5                                                                                                                           | 5      | 10     | 08>            | <40      | <u>د40</u>   | c40                    | <40                  |
| 4.5<br>4.5<br>4.5<br>4.5<br>7.5<br>7.5                                                                                                                                  | 8      | 10     | <74            | <37      | <37          | <37                    | <37                  |
| 7.5<br>4.5<br>4.5<br>4.5<br>7.5<br>7.5                                                                                                                                  | 5      | 10     | 56             | ×6.8     | €6.8         | <6.8                   | <6.8                 |
| 4.5<br>4.5<br>4.5<br>7.5<br>7.5                                                                                                                                         | 8      | 10     | <34            | <17      | <17          | <17                    | <17                  |
| 4.5<br>4.5<br>7.5<br>7.5                                                                                                                                                | 5      | 10     | 170            | <30      | <30          | <30                    | <30                  |
| 4.5<br>4.5<br>7.5<br>4.5                                                                                                                                                | 22     | 9      | <0.7           | <0.35    | <0.35        | <0.35                  | <0.35                |
| 4.5<br>7.5<br>4.5                                                                                                                                                       | 5      | 10     | 69>            | \$<br>\$ | \$           | \$                     | <34                  |
| 7.5                                                                                                                                                                     | 2      | 10     | 170            | <18      | ×18          | ×18                    | √18                  |
| 4.5                                                                                                                                                                     | 8      | 10     | 250            | <16      | <16          | <16                    | < <b>16</b>          |
| 7.5                                                                                                                                                                     | 5      | 10     | <170           | <36      | <39          | 33                     | 8                    |
|                                                                                                                                                                         | 8      | 10     | 470            | <33      | <33          | <333                   | <33                  |
| CO-SB-24-01 1.5 2                                                                                                                                                       | 2      | 0      | 760            | <36      | <36          | 38                     | 8                    |

320403

Table 6-1. Pesticide Concentrations in Soils at Chevron Orlando, Florida

| Sample 1D   | Duplicate  | Upper Depth<br>(Feet) | Lower Depth<br>(Feet) | Excavation Depth Total -Chlordane (Feet) | Total -Chlordane<br>(mg/Kg) | alpha-BHC<br>(mg/Kg) | beta-BHC<br>(mg/Kg) | gamma-BHC<br>(mg/Kg) | delta-BHC<br>(mg/Kg) |
|-------------|------------|-----------------------|-----------------------|------------------------------------------|-----------------------------|----------------------|---------------------|----------------------|----------------------|
|             |            | <u> </u>              |                       | •                                        | 100                         | 135                  | /25                 | <25                  | <35                  |
| CO-SB-25-01 |            | ر<br>ان               | 7                     | - u                                      | 87                          | 3 5                  | 5 P                 | 3 8                  | <34                  |
| CC-88-79-01 | - June 1   | . T                   | 4 0                   | ٥                                        | <70                         | 35                   | <35                 | <35                  | <35                  |
| CO-58-28-02 | Cupilicate | i n                   | 2                     | -                                        | 13                          | <0.36                | <0.36               | <0.36                | <0.36                |
| CO-SR-29-01 |            | 4.5                   | 6                     | 0                                        | 40.64                       | <0.32                | <0.32               | <0.32                | <0.32                |
| CO-SB-29-02 | Duplicate  | 4.5                   | 2                     | 0                                        | <0.62                       | <0.31                | <0.31               | <0.31                | <0.31                |
| CO-SB-30-01 |            | 0                     | 0.5                   | 0                                        | <0.67                       | <0.33                | <0.33               | <0.33                | <0.33                |
| CO-SB-31-01 |            | 4.5                   | 5                     | 0                                        | <0.59                       | <0.29                | <0.29               | <0.29                | <0.29                |
| CO-SB-35-01 |            | 0                     | 0.5                   | 0                                        | 43                          | <0.33                | <0.33               | <0.33                | <0.33                |
| CO-SB-9-01  |            | 0                     | 0.5                   | 9                                        | <7.3                        | 43.7                 | <3.7                | <3.7                 | <3.7                 |
| CSP 1-1     |            | 4                     | 9                     | 4                                        | ⊽                           | <1                   | -<1                 | ⊽                    | ₹                    |
| CSP 1-2     |            | 9                     | 8                     | 4                                        | ₹                           | ₽                    | - V                 | <1                   | ۲۷                   |
| CSP 1-3     |            | 80                    | 10                    | 4                                        | ⊽                           | V                    | <۱                  | <1                   | <1                   |
| CSP 10-1    |            | 4                     | 9                     | 4                                        | 24                          | <1                   | <b>!&gt;</b>        | 7                    | ۲,                   |
| CSP 10-2    | _          | 9                     | 8                     | 4                                        | 19                          | ٧                    | <b>!&gt;</b>        | <۱                   | <1                   |
| CSP 10-3    |            | В                     | 10                    | 4                                        | 1,4                         | <ہا "                | ۲۷                  | ₹                    | ٧                    |
| CSP 2-1     |            | 4                     | ω                     | မ                                        | ₽                           | <1                   | <b>1</b> >          | _ <1                 | - √1                 |
| CSP 2-2     |            | 9                     | 8                     | 9                                        | ۲                           |                      | ۲۷                  | ۷                    | <1                   |
| CSP 2-3     |            | 8                     | 10                    | 9                                        | 16                          | 1>                   | <b>1</b> >          | ۲۰                   |                      |
| CSP 3-1     |            | 4                     | 9                     | 9                                        | <b>-</b>                    | -<1                  | ۲۷                  | ⊽                    | ⊽                    |
| CSP 3-2     |            | 9                     | 8                     | 9                                        | ₹                           | - <1                 | <b>.</b>            | <4                   | ₹                    |
| CSP 3-3     | !          | 8                     | 10                    | 9                                        | V                           | ۲۷                   | -                   | <1                   | ۸1                   |
| CSP 4-1     |            | 4                     | 9                     | 9                                        | ₹                           | ₹                    | <1                  | ٧.                   | <1                   |
| CSP 4-2     | _          | 9                     | 80                    | 9                                        | ⊽                           | ₹                    | ₹                   | ۷                    | <1                   |
| CSP 4-3     |            | 8                     | 10                    | 9                                        | 1.3                         | ⊽                    | ۲>                  | <1                   | <1                   |
| CSP 5-1     |            | 4                     | 9                     | ç,                                       | 50                          | ۲                    | <1                  | ₹                    | ٧                    |
| CSP 5-2     |            | 9                     | æ                     | 9                                        | 3.1                         | ۲۰                   | ٧,                  | ₹                    | ٧                    |
| CSP 5-3     | :          | 80                    | 10                    | 9                                        | 10                          | ٧                    | ٧                   | ₹                    | 7                    |
| CSP 6-1     |            | 4                     | 9                     | 4                                        |                             | V                    | ₹                   | ₽                    | ⊽                    |
| CSP 6-2     |            | 9                     | æ                     | 4                                        | <1                          | ٧,                   | ۲۷                  |                      | ₹                    |
| CSP 6-3     |            | 8                     | 9                     | 4                                        | - <1                        | <1                   | ۲۰                  | ₹                    | ₹                    |
| CSP 7-1     |            | 4                     | 9                     | 9                                        | ۷٠.                         | 7                    | ⊽                   | 7                    | ₹                    |
| CSP 7-2     |            | 9                     | 8                     | 9                                        | ₽.                          | 7                    | ۲                   | 7                    | <u>۲</u>             |
| CSP 7-3     |            | œ                     | 10                    | 9                                        | <b>V</b>                    | ₹                    | ⊽                   | ⊽                    | Ţ.                   |
| CSP 8-1     |            | 4                     | 9                     | 4                                        | ٧,                          | ₹                    | ₹                   | ⊽                    | √                    |
| CSP 8-2     | _          | 9                     | 8                     | 4                                        | <1                          | ۲۷                   | ₹                   | ⊽                    | ₹                    |
| CSP 8-3     |            | 8                     | 10                    | 4                                        | 2                           | 7                    | ۲                   | ₹                    | 7                    |
|             |            |                       |                       | •                                        |                             |                      |                     |                      |                      |

Table 6-1. Pesticide Concentrations in Soils at Chevron Orlando, Florida

|                             |            |            |         |           |           |           | _          |           |           |           | _         |            | -         | ٠,        |           | _         | ī         | _         |         | _       |              | $\neg$   |         |         |         |         |         | 1       | <u></u> | . 7     |         | <del>-</del> 1 |         | _       | 7       | 1                                                                                           | ~       |
|-----------------------------|------------|------------|---------|-----------|-----------|-----------|------------|-----------|-----------|-----------|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|---------|---------|--------------|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------------|---------|---------|---------|---------------------------------------------------------------------------------------------|---------|
| delta-BHC<br>(mg/Kg)        | \<br><1    | ⊽          | ٧       | ⊽         | ⊽         | <u>۷</u>  | ⊽          | ₽         | ⊽         |           |           |            |           |           |           |           |           |           | ₹       | ₹       | ₹            | ٧        | 2.2     | 1.6     | 2.3     | 1.3     | Ŷ       | 2.1     | 7.2     | 7.4     | 8.6     | 13             | ۲,      | ٧.      | <5      | \<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\ | 9.5     |
| gamma-BHC<br>(mg/Kg)        | 1          | -√1        | 7       | ⊽         | ₹         | 7         | V          | ۷.        | ۲         | ·         |           |            |           |           |           |           |           |           | ٧       | ₹       | ₹            | ₹        | 1.6     | 1.2     | 1.1     | V       | ₹2      | v       | 10      | 12      | 7.7     | 12             | اح      | <1      | 8.2     | 5.4                                                                                         | 14      |
| beta-BHC<br>(mg/Kg)         | \<br> <br> | <1         | <1      | ۲,        | <1        | <1        | ۷,         | <1        | ₽         | i         |           |            |           |           |           |           |           |           | 7       | ۲,      |              | · ·      | ۷.      | <1      | 1>      | ۲>      | <5      | 7       | <2      | <2      | <2      | 2.3            | ₹       | ۷.      | <5      | <5>                                                                                         | <5>     |
| alpha-BHC<br>(mg/Kg)        | V          | <b>~</b> 4 | <1>     | ۲۷        | <1        | <1        | <b>~</b> 1 | <1        | V         |           |           |            |           |           |           |           |           |           | <٦      | <1      | <1           | <b>\</b> | 1.5     | 1.3     | 1.8     | <1      | <5      | ₹       | 5.5     | 5.8     | 9       | 8.5            | · >1    | √       | Ą       | <5                                                                                          | 6.5     |
| Total -Chlordane<br>(mg/Kg) | 29         | 6.8        | 5.6     | 5.5       | -<1       | 5.9       | 2.4        | 1.4       | 2.8       | <10       | <10       | <10        | 52        | <10       | <10       | <10       | <10       | <10       | Į.      | \       | <b>L&gt;</b> | ٧.       | 41      | 56      | . 70    | 45      | 72      | 41      | 130     | 120     | . 110   | 130            | ٧.      | 4       | 100     | 65                                                                                          | 190     |
| Excavation Depth<br>(Feet)  | 9          | 9          | 9       | 10        | 10        | 10        | 10         | 10        | 10        | 4         | 1         | _          | 10        | _         | 0         | 0         | 1         | 2         | 9       | 10      | 10           | 9        | 10      | 10      | 92      | 10      | 10      | 10      | 10      | 10      | 10      | 10             | 9       | 10      | 10      | 10                                                                                          | 4       |
| Lower Depth<br>(Feet)       | 9          | 8          | 10      | 11        | 11        | 11        | 11         | =         | 11        | 4         | 4         | 4          | 4         | 4         | 4         | 4         | 4         | 4         | 11      | 11      | 11           | 11       | 7.      | 11      | 11      | 7       | 1.      | 11      | 11      | 1       | F       | 1              | +       |         | 7       | 1                                                                                           | 5.5     |
| Upper Depth<br>(Feet)       | 4          | 9          | 8       | 10        | 10        | 10        | 10         | 10        | 10        | 2         | 2         | 2          | 2         | 7         | 2         | 2         | 2         | 2         | 10      | 5       | 2            | 10       | 10      | 9       | 10      | 9       | 10      | 10      | 10      | 10      | ę       | 10             | 10      | 9       | 10      | 10                                                                                          | 4       |
| Duplicate                   |            |            |         |           |           |           |            |           |           |           |           |            |           |           |           |           |           |           |         |         |              |          | _       |         |         |         | ļ<br>   |         | -       |         |         |                |         | -       |         |                                                                                             |         |
| Sample ID                   | CSP 9.1    | CSD 9-2    | CSP 9-3 | DEEP EX-1 | DEEP EX-2 | DEEP EX-3 | DFFP FX-4  | DEEP EX-5 | DEEP EX-6 | DUP-05-01 | DUP-08-01 | DLIP-25-04 | DUP-28-01 | DUP-31-01 | DUP-35-01 | DUP-53-01 | DUP-58-01 | DUP-61-01 | EC 43-1 | FC 43-2 | EC 44-1      | FC 44-2  | FC 45-1 | FC 45-2 | FC 46-1 | EC 46-2 | EC 47-1 | EC 47-2 | FC 48-1 | FC 48-2 | FC 49-1 | FC 49-2        | FC 50-1 | FC 50-2 | FC 51-1 | FC 51-2                                                                                     | EC 52-1 |

Table 6-1. Pesticide Concentrations in Soils at Chevron Orlando, Florida

| EC 52.2  | Duplicate | Upper Depth<br>(Feet) | Lower Depth<br>(Feet) | Excavation Depth<br>(Feet) | Total -Chlordane<br>(mg/Kg) | alpha-BHC<br>(mg/Kg) | beta-BHC<br>(mg/Kg) | gamma-BHC<br>(mg/Kg) | delta-BHC<br>(mg/Kg) |
|----------|-----------|-----------------------|-----------------------|----------------------------|-----------------------------|----------------------|---------------------|----------------------|----------------------|
|          |           | 5.5                   | 2                     | 4                          | 14                          | ۲                    | <1                  | <1                   | <1                   |
| FC 53-1  |           | 10                    | 11                    | 10                         | \<br><1                     | ٧                    | <1                  | _ <1                 | ⊽                    |
| EC 53-2  |           | 9                     | 11                    | 10                         | ₹                           | 12                   | <1                  |                      | ⊽                    |
| FC 54-1  |           | 9                     |                       | 9                          | 2.3                         | -<1                  | ^1                  | ⊽                    | ⊽                    |
| FC 54-2  |           | 9                     | 7                     | ô                          | ⊽                           | ۷.                   | <1                  | L>                   | 7                    |
| FC 58    |           | 9                     | 7                     | ထ                          | 6.3                         | ⊽                    | <u>۲</u>            | <1                   | - <1                 |
| EC 60-1  |           | 9                     | 7                     | 9                          | 180                         | <5                   | <5                  | 9>                   | 8.2                  |
| EC 60-2  |           | ç                     |                       | 9                          | 270                         | \$                   | <5                  | 9>                   | 12                   |
| FC 64    |           | 10                    | 17                    | 10                         | 24                          | ₹                    | <1                  | <1                   | ۲                    |
| FC 61-1  |           | 10                    | 1                     | 10                         | 200                         | <10                  | <10                 | <10                  | <10                  |
| FC 61-2  |           | 10                    | 17                    | 5                          | 210                         | <10                  | <10                 | <10                  | <10                  |
| FC 62-1  |           | 4                     | 5.5                   | 4                          | ₽                           |                      | V                   | <b>&lt;</b> 1        | ۲                    |
| EC 62-2  |           | 5.5                   |                       | 4                          | ⊽                           | V                    | <b>!</b> >          | ₽                    |                      |
| FC 68    |           | -                     | 2                     | -                          | 69                          | 42                   | 7>                  | <2                   | 7                    |
| RA 1-1   |           | 0                     | \ <u>-</u>            | -                          | 3.8                         | <b>1</b> >           | <b>[&gt;</b>        | √                    | ۷1                   |
| RA 10-1  |           | 0                     | _                     | -                          | 720                         | 33                   | <10                 | <10                  | <u>B</u>             |
| RA 10-2  |           | -                     | 2                     | -                          | 84                          | <10                  | <10                 | <10                  | <10                  |
| RA 100-2 |           | -                     | 2                     | 10                         | 52                          | ۷-                   | <1                  | ۲                    | ۲                    |
| RA 100-4 |           | 6                     | 4                     | 10                         | <10                         | <10                  | <10                 | ×10                  | <10                  |
| RA 101-2 |           | -                     | 2                     | 4                          | 56                          | <5                   | \$                  | ₹                    | Ş                    |
| RA 102-1 |           | 0                     | _                     | 4                          | 44                          | ۲-                   | ۲                   | ₹                    | 89                   |
| RA 102-4 |           | 3                     | 4                     | 4                          | <10                         | <10                  | <10<br>√10          | ~10                  | <10                  |
| RA 103-1 |           | 0                     | -                     | 9                          | 27                          | <b>~</b>             | 7                   | ⊽                    | ⊽                    |
| RA 103-4 |           | 6                     | ₹                     | 9                          | <10                         | <10                  | <10                 | <10                  | <10                  |
| RA 104-1 |           | 0                     | -                     | 0                          | 52                          | <2                   | <5>                 | <5                   | \$                   |
| RA 108-1 |           | 0                     | _                     | 9                          | 6.2                         | ۲۷                   | 7                   | ۷.                   | ⊽                    |
| RA 109-1 | ļ<br>     | 0                     | -                     | 9                          | 1.7                         | ۲                    | ⊽                   | ⊽                    | ⊽                    |
| RA 109-2 |           | <b>~</b>              | 2                     | 9                          | 18                          | ۲,                   | ⊽                   | ₹.                   | ₹                    |
| RA 11-1  |           | 0                     | -                     | 1                          | 57                          | ۲.                   |                     | √                    | ٧                    |
| RA 112-2 |           | -                     | 2                     | 9                          | 20                          | <1                   |                     | ۲                    | ⊽                    |
| RA 113-2 |           | -                     | 7                     | 9                          | <i>L</i> I                  | ۷,                   | ₹                   | V                    | ₽                    |
| RA 1144  |           | က                     | 4                     | 9                          | 97                          | ည                    | 1.4                 | 2.4                  | 4                    |
| RA 115-4 |           | 8                     | 4                     | 9                          | 94                          | <10                  | ×10                 | <10                  | <10                  |
| RA 116-4 | _         | 3                     | 4                     | 9                          | 140                         | <10                  | °10                 | ×10                  | 1                    |
| RA 116-5 |           | 4                     | 5                     | 9                          | 360                         | 13                   | <10                 | 13                   | 2                    |
| RA 117-1 |           | 0                     |                       | 0                          | ₹                           | 7                    | ⊽                   | ⊽                    | V                    |
| RA 118-4 |           | 3                     | 4                     | 10                         | ⊽                           | <b>∇</b>             | ⊽                   | ₹                    | \<br>\<br>\          |

Table 6-1. Pesticide Concentrations in Soils at Chevron Orlando, Florida

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sample ID | Duplicate      | Upper Depth<br>(Feet) | Lower Depth<br>(Feet) | Excavation Depth<br>(Feet) | Excavation Depth Total -Chlordane (Feet) (mg/Kg) | alpha-BHC<br>(mg/Kg) | beta-BHC<br>(mg/Kg) | gamma-BHC<br>(mg/Kg) | delta-BHC<br>(mg/Kg) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|-----------------------|-----------------------|----------------------------|--------------------------------------------------|----------------------|---------------------|----------------------|----------------------|
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DA 410 A  |                | ſ,                    | 4                     | 10                         | 150                                              | Q.V                  | <10                 | <10                  | <10                  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RA 119.4  |                | ) (1)                 | 4                     | 10                         | ×10                                              | <10                  | <10                 | <10                  | <10                  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PA 12-1   |                | 0                     | -                     | 4                          | 94                                               | <1                   | V                   | ۷                    | ₹                    |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RA 120-4  |                | 3                     | 4                     | 9                          | 81                                               | <10                  | <10                 | <10                  | ×10                  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RA 121-4  |                | 8                     | 4                     | 9                          | 100                                              | <10                  | <10                 | <10                  | 410                  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RA 122-4  |                | 3                     | 4                     | 10                         | 250                                              | <10                  | <10                 | 12                   | °40                  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RA 173-4  |                | m                     | 4                     | 10                         | 210                                              | 18                   | <10                 | 27                   | 21                   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RA 126-4  | _              | 8                     | 4                     | 10                         | 23                                               | <10                  | <10                 | <10                  | <10                  |
| 4         3         4         4         40         <0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RA 13-1   | _              | 0                     | -                     | 4                          | 130                                              | V                    | ۲۰                  | ⊽                    | ₹                    |
| 4         3         4         10         380         <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RA 13.4   |                | С                     | 4                     | 4                          | ×10                                              | <10                  | <10                 | <10                  | QD<br>V              |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RA 132-4  |                | m                     | 4                     | 12                         | 380                                              | <10                  | <10                 | 18                   | 18                   |
| 1   2   1   25   41   1   25   41   1   25   41   1   25   41   1   25   41   1   25   41   1   25   41   1   25   41   1   25   41   1   1   25   41   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RA 132.4  |                | m                     | 4                     | 10                         | 34                                               | <10                  | <10                 | <10                  | <10                  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RA 137-2  | <u> </u>       | -                     | 2                     | -                          | 22                                               | ₹.                   | <1                  | V                    | ٧                    |
| 2         1         32         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RA 138-2  |                |                       | 2                     | <u>-</u>                   | 25                                               | ٧                    | 1>                  | <1                   | .^                   |
| 2         1         4         2.6         <1           2         1         2         1         16         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RA 139-2  |                | -                     | 2                     | -                          | 32                                               | ٧                    | ۷,                  | <1                   | ⊽                    |
| 2         1         2         1         16         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RA 14-1   |                | 0                     | -                     | 4                          | 2.6                                              | ٧                    | ۲۰                  | ₹.                   | ₹                    |
| 1   2   6   15   54     1   2   6   19   54     1   2   6   8.5   54     1   2   6   8.5   54     0   1   0   54   54     0   1   0   54   54     0   1   0   54   54     0   1   0   54   54     0   1   0   54   54     0   1   0   54   54     0   1   0   54   54     0   1   0   54   54     0   1   0   58   54     0   1   0   58   54     0   1   0   44   54     0   1   2   1   19     0   1   2   1   19     0   1   2   1   19     0   1   2   4   54     0   1   2   4   54     0   1   2   4   54     0   1   2   4   54     0   1   2   54   54     0   1   2   4   54     0   1   10   54   54     0   1   10   54   54     0   1   10   54   54     0   1   10   54   54     0   1   10   54   54     0   1   10   54   54     0   1   10   54   54     0   1   10   54   54     0   1   10   54   54     0   1   10   54   54     0   1   10   54   54     0   1   10   54   54     0   1   10   54   54     0   1   10   54   54     0   1   10   54   54     0   1   10   54   54     0   1   10   54     0   1   10   54     0   1   10   54     0   1   10   54     0   1   10   54     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10     0   1   10 | RA 140-2  |                | -                     | 2                     | -                          | 16                                               | \<br>\<br>\          | ٧.                  |                      | V.                   |
| 1   2   6   7.3   \$\chi 1   1   2   6   19   \$\chi 1   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RA 141-2  | -              | -                     | 2                     | 9                          | 15                                               | <1                   | ٧.                  | ₹                    | ۷,                   |
| 1   2   6   19   5    1   2   6   8.5   5    1   2   6   8.5   5    1   0   5    1   0   5    1   0   5    1   0   5    1   0   5    1   0   5    1   0   5    1   0   5    1   0   1    1   0   1    1   0   1    1   0   1    1   0   1    1   0   1    1   0   1    1   0   1    1   0   1    1   0   1    1   0   1    1   0   1    1   0   1    1   0   1    1   0   1    1   0   1    1   0   1    1   0   1    1   0   1    1   0   1    1   0   1    1   0   1    1   0   1    1   0   1    1   0   1    1   0   1    1   0   1    1   0   1    1   0   1    1   0   1    1   0   1    1   0   1    1   0   1    1   0   1    1   0   1    1   0   0   1    1   0   0   1    1   0   0   0   1    1   0   0   0   0   0   0     1   0   0   0   0   0     1   0   0   0   0   0     1   0   0   0   0   0     1   0   0   0   0   0     1   0   0   0   0   0     1   0   0   0   0   0     1   0   0   0   0   0     1   0   0   0   0   0   0     1   0   0   0   0   0   0     1   0   0   0   0   0   0     1   0   0   0   0   0   0     1   0   0   0   0   0   0   0     1   0   0   0   0   0   0   0     1   0   0   0   0   0   0   0   0     1   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RA 142-2  |                | -                     | 2                     | 9                          | 7.3                                              | <1                   | ۷.                  | ₹                    | ⊽                    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RA 143-2  |                | -                     | 2                     | 9                          | 19                                               | ۲,                   | درا                 | ₹                    | ₹                    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RA 144-2  |                | -                     | 2                     | 9                          | 8.5                                              | <1                   | ⊽                   | ý                    | ٧                    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RA 145-1  | _              | 0                     | -                     | 0                          | ۷.                                               | ۲,                   | ₹                   | ⊽                    | ⊽                    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RA 146-1  | <u> </u><br> - | 0                     | -                     | 0                          | <1                                               | 1.4                  |                     | ₹                    | ⊽                    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RA 147-1  |                | 0                     | , -                   | 0                          | ₽                                                | ۲۷                   | V                   | ₹                    | ٧                    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RA 148-1  | -              | 0                     |                       | 0                          | ⊽                                                | -1                   | <1                  |                      | √                    |
| 1     2     10     9.3     <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RA 149-1  |                | 0                     | -                     | 0                          | ٧                                                | V                    | ۲,                  | <b>√</b>             | 7                    |
| 1     2     10     8.8     <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RA 15-1   |                | 0                     | <br> -                | 10                         | 9.3                                              | <b>.</b>             | ₹                   | ⊽                    | ⊽                    |
| 2     3     10     3.8     <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RA 15-2   |                | _                     | 2                     | 10                         | 8.8                                              | ٧                    | √                   | ٧                    | V                    |
| 3         4         10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RA 15-3   |                | 2                     | 33                    | 40                         | 3.8                                              | ⊽                    | ₹                   | ₹                    | Ç.                   |
| 1         0         41         <1           2         1         0         1.5         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RA 15-4   | <u> </u>       | ٣                     | 4                     | 10                         | <10                                              | <10                  | <10                 | ×10                  | ×10                  |
| 1     0     1     0     1.5     <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RA 153-1  |                | 0                     | -                     | 0                          | 41                                               | 7                    | ٧                   | ₩                    | √                    |
| 2         1         2         1         19         <1           2         1         34         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RA 154-1  | <u> </u>       | 0                     | -                     | 0                          | 1.5                                              | 7                    | ⊽                   | ₹                    | ₹                    |
| 2     1     34     <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RA 155-2  | _              | -                     | 2                     | 1                          | 19                                               | ₹                    | ⊽                   | ⊽                    | ⊽                    |
| 2     1     2     0     <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RA 156-2  | <br> -         | <br> -                | 2                     | <b>ا</b>                   | 34                                               | ₹                    | <b>∑</b>            | ⊽                    | ⊽                    |
| 2 1 2 0 <1 <1 or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RA 157-2  |                | _                     | 2                     | 0                          |                                                  | ۲.                   | ⊽                   | V                    | ₹                    |
| 0 1 70 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RA 158-2  |                | -                     | 2                     | 0                          | ۷-                                               | √                    | ⊽                   | ⊽                    | v                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RA 16-1   |                | 0                     | -                     | 10                         | 70                                               | ₹                    | ٧                   | √                    | ₹                    |

Table 6-1. Pesticide Concentrations in Soils at Chevron Orlando, Florida

| Sample ID | Duplicate | Upper Depth<br>(Feet) | Lower Depth<br>(Feet) | Excavation Depth<br>(Feet) | Total -Chlordane<br>(mg/Kg) | alpha-BHC<br>(mg/Kg) | beta-BHC<br>(mg/Kg) | gamma-BHC<br>(mg/Kg) | delta-BHC<br>(mg/Kg) |
|-----------|-----------|-----------------------|-----------------------|----------------------------|-----------------------------|----------------------|---------------------|----------------------|----------------------|
| RA 16-2   |           | _                     | 2                     | 10                         | 220                         | <10                  | <10                 | <10                  | <10                  |
| RA 16-3   |           | 2                     | m                     | 10                         | 130                         | <10                  | <10                 | <10                  | <10                  |
| RA 16-4   |           | 3                     | 4                     | 10                         | 210                         | <10                  | <10                 | ~10                  | <10                  |
| RA 16-5   |           | 4                     | 9                     | 10                         | 350                         | <10                  | <10                 | <10                  | <10                  |
| RA 17-1   | -         | 0                     | -                     | 10                         | 130                         | ۲۰                   | <1                  | <٦                   |                      |
| RA 17-2   |           | 1                     | 2                     | 40                         | 22                          | . ⊲                  | ₹                   | ۷.                   | 7                    |
| RA 17-3   |           | 2                     | 3                     | 9                          | 2.5                         | - <1                 | ٧.                  | <١                   | ۲۷                   |
| RA 17-4   | <br>      | 3                     | 4                     | 10                         | 120                         | 1.9                  | <يا                 | <1                   | 6.1                  |
| RA 18-1   |           | 0                     | 1                     | 2                          | 99                          | <1                   | <b> </b>  >         | 1>                   | ۲۰                   |
| RA 18-2   |           | -                     | 2                     | 2                          | 100                         | <10                  | <10                 | <10                  | <10                  |
| RA 18-3   |           | 2                     | 3                     | 2                          | 70                          | <10                  | 0L>                 | <10                  | <10                  |
| RA 18-4   |           | 8                     | 4                     | 2                          | 55                          | 2.4                  |                     | 2                    | 2.9                  |
| RA 18-5   |           | 4                     | 2                     | 2                          | <10                         | <10                  | <10                 | <10                  | <10                  |
| RA 19-1   |           | 0                     | -                     | 9                          | 2000                        | <100                 | <100                | <100                 | <100                 |
| RA 19-2   |           | -                     | 2                     | 9                          | 53                          | <1                   | √1                  | <1                   | 1.7                  |
| RA 19-3   | <u> </u>  | 2                     | က                     | ဖ                          | 40                          | <10                  | <10                 | <10                  | <10                  |
| RA 19-4   |           | 3                     | 4                     | و                          | 100                         | <10                  | 01>                 | <10                  | <10                  |
| RA 19-5   | :         | 4                     | 25                    | 9                          | 100                         | <10                  | <10                 | <10                  | <10                  |
| RA 2-1    |           | 0                     | -                     | 1                          | 58                          | ۲                    | √                   | ⊽                    | ٧                    |
| RA 20-1   | :         | 0                     | -                     | 10                         | 94                          | <1                   | ⊽                   | ۲۰                   | CBI                  |
| RA 20-4   | :         | 3                     | 4                     | 10                         | 110                         | <10                  | ×40                 | ×10                  | ×10                  |
| RA 20-5   |           | 4                     | 5                     | 10                         | 280                         | <10                  | <10                 | ۰ <del>۱</del> 0     | <10                  |
| RA 21-1   | <br>      | 0                     | -                     | 10                         | 22_                         | <1                   | ۲۷                  | ₽                    | ₹                    |
| RA 21-2   |           | -                     | 2                     | 10                         | 5.7                         | <b>\</b>             | <٦                  | 7                    | 7                    |
| RA 21-3   | <br>      | 7                     | 3                     | 10                         | 2                           | ٧.                   | ٧.                  | ₹                    | 7                    |
| RA 21-4   |           | m                     | 4                     | 10                         | 1500                        | 14                   | <10                 | 17                   | ×10                  |
| RA 21-5   |           | 4                     | 5                     | 10                         | 820                         | 14                   | <10                 | 4                    | 20                   |
| RA 22-1   |           | 0                     | 1                     | 10                         | 20                          | 7                    | ۲                   | ₹                    | ₹                    |
| RA 22-2   |           | -                     | 2                     | 10                         | ₽                           |                      | ⊽                   |                      | ٧                    |
| RA 22-3   |           | 2                     | 3                     | 10                         | <1                          | \<br>-               | ٧.                  | ⊽                    | ٧                    |
| RA 22-4   |           | 9                     | 4                     | 10                         | 180                         | <10                  | <10                 | ¢40                  | <b>₹10</b>           |
| RA 23-1   |           | 0                     | 1                     | 10                         | 41                          | ×10                  | <10<br><10          | <10                  | ×10                  |
| RA 23-2   |           | 1                     | 2                     | 10                         | 44                          | ₹                    | √                   | ₹                    | ⊽                    |
| RA 23-3   |           | 2                     | 3                     | 10                         | 25                          | ₹                    | ₹                   | ٧                    | ٧                    |
| RA 23-4   |           | က                     | 4                     | 10                         | 50                          | <10                  | <10                 | ~10<br>~10           | ×10                  |
| RA 24-1   |           | 0                     | -                     | 10                         | 2.9                         | ۲.                   | ⊽                   | ₹                    | ₹                    |
| RA 24-2   |           | <del>-</del>          | 2                     | 10                         | 7.9                         | ⊽                    | ₹                   | ⊽                    | ⊽                    |

Table 6-1. Pesticide Concentrations in Soils at Chevron Orlando, Florida

| Sample ID | Duplicate | Upper Depth<br>(Feet) | Lower Depth<br>(Feet) | Excavation Depth<br>(Feet) | Total -Chlordane<br>(mg/Kg) | alpha-BHC<br>(mg/Kg) | beta-BHC<br>(mg/Kg) | gamma-BHC<br>(mg/Kg) | delta-BHC<br>(mg/Kg) |
|-----------|-----------|-----------------------|-----------------------|----------------------------|-----------------------------|----------------------|---------------------|----------------------|----------------------|
| DA 24.3   |           | ,                     | т                     | 10                         | l>                          | ₽                    | ₽                   | <1                   | ŀ                    |
| PA 24-4   | <br> -    | 3                     | 4                     | 10                         | 290                         | <10                  | <10                 | 11                   | 1                    |
| RA 24-5   |           | 4                     | 5                     | 10                         | 480                         | 18                   | <10                 | 24                   | 24                   |
| RA 25-1   |           | 0                     | <br>                  | 10                         | 100                         | <1                   | ۲۷                  | ₽                    | ₽                    |
| RA 25-2   |           | -                     | 2                     | 10                         | 110                         | <10                  | <10                 | <10                  | ×10                  |
| RA 25.3   |           | 2                     | 6                     | 10                         | 440                         | 31                   | <10                 | 31                   | 40                   |
| RA 25.4   |           | <sub>ا</sub> در       | 4                     | 10                         | 330                         | <10                  | <10                 | <10                  | <10                  |
| RA 25.5   |           | 4                     | 5                     | 10                         | 450                         | <10                  | <10                 | 12                   | 16                   |
| RA 26-1   | -         | 0                     | _                     | -                          | 41                          | <10                  | <10                 | <10                  | <10                  |
| RA 26.2   |           | , -                   | 2                     | -                          | 58                          | <10                  | <10                 | <10                  | °10                  |
| PA 26-3   |           | 2                     | 6                     | \                          | 32                          | ⊽                    | ۲۷                  | ٧-                   | 1,1                  |
| PA 26.4   |           | 1 67                  | 4                     | <br> -<br>                 | 57                          | <10                  | <10                 | <10                  | <10                  |
| DA 26 5   | +-        | , 7                   |                       | -<br> -                    | 89                          | <10                  | ×10                 | <10                  | <10                  |
| PA 27-1   |           | c                     | -                     | 0                          | 45                          | ⊽                    | ۲۷                  | - <1                 | 2.4                  |
| DA 27.2   |           | <u></u>               | 2                     | 0                          | 55                          | ×10                  | <10                 | <10                  | <10                  |
| DA 27.3   |           | . ^                   | 3                     | 0                          | 43                          | <10                  | <10                 | <10                  | <10                  |
| DA 27 A   | ļ         | 1 67                  | 4                     | 0                          | 70                          | ×10                  | <10                 | <10                  | <10                  |
| PA 28.1   |           | 0                     |                       | 10                         | 96                          | 1.6                  | ⊽                   | Į.                   | CBI                  |
| RA 28-2   |           | -                     | 2                     | 10                         | 170                         | <10                  | <10                 | <10                  | √10                  |
| RA 28-3   |           | 2                     | 3                     | 10                         | 250                         | <10                  | <10                 | <10                  | 13                   |
| PA 28-4   |           | 8                     | 4                     | ₽<br>                      | 220                         | ×10                  | <10                 | <10                  | <10                  |
| RA 29-1   | <br> -    | 0                     | -                     | 100                        | 200                         | <10                  | <10                 | <10                  | <10                  |
| PA 29.2   |           | -                     | 2                     | 10                         | 280                         | 10                   | <10                 | <10                  | 12                   |
| PA 20.4   |           |                       | 4                     | 10                         | 200                         | ×10                  | <10                 | <10                  | <10                  |
| RA 3.1    |           |                       | -                     | 2                          | 110                         | ₹                    | √.                  | ۲۷                   | CBI                  |
| RA 30-1   |           | a                     | -                     | 4                          | 110                         | ۲,                   | ٧                   | ٧                    | ⊽                    |
| RA 30-1   |           | 0                     | -                     | 4                          | 6.4                         | 7                    | ⊽                   | ,<br>V               | ₹                    |
| RA 31-1   | <br> -    | 0                     | <del>-</del>          | 0                          | 20                          | ⊽                    | √                   | ⊽                    | ⊽                    |
| RA 32-1   |           | 0                     | -                     | 0                          | 1.3                         | ۲۰                   | ₹                   | ₹                    | v                    |
| RA 33-1   | <u> </u>  | 0                     | -                     | _                          | 50                          | <1                   |                     | ⊽                    | ₹                    |
| RA 33-2   |           | -                     | 2                     | -                          | 31                          | <b>1</b> >           | ۲ <b>۰</b>          | V                    | ⊽                    |
| RA 34-1   |           | 0                     | -                     | -                          | 37                          | <b>1</b> 2           | ۲                   | ₹                    | ₹                    |
| RA 35-1   |           | ٥                     | ,-                    | -                          | 1.9                         | <1                   | 7                   | √                    | 7                    |
| RA 36-1   |           | 0                     | -                     | -                          | 09                          | <1                   | <1                  | ⊽                    | ₹                    |
| RA 36-2   |           | -                     | 2                     | -                          | 22                          | Ţ                    | ⊽                   | ⊽<br>⊢               | ۷                    |
| RA 37-1   |           | 0                     | -                     | <b>+</b> -                 | 11                          | ٧                    | ₽                   | <u>۷</u>             | ₹                    |
| RA 37-2   |           | \ <u>-</u>            | 2                     | -                          | 13                          | <1                   | 7                   | ⊽                    | ⊽                    |
|           | 1         |                       |                       |                            |                             | <u> </u>             |                     |                      |                      |

Table 6-1. Pesticide Concentrations in Soils at Chevron Orlando, Florida

| RA36-1                                                                                                                                                                                             | Sample ID                               | Duplicate             | Upper Depth<br>(Feet) | Lower Depth<br>(Feet) | Excavation Depth<br>(Feet) | Total -Chlordane<br>(mg/Kg) | alpha-BHC<br>(mg/Kg) | beta-BHC<br>(mg/Kg) | gamma-BHC<br>(mg/Kg) | delta-BHC<br>(mg/Kg) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------|-----------------------|-----------------------|----------------------------|-----------------------------|----------------------|---------------------|----------------------|----------------------|
| 1                                                                                                                                                                                                  | 1                                       |                       |                       | -                     | -                          | 29                          | ٧                    | ⊽                   | ⊽                    | √                    |
| 1                                                                                                                                                                                                  | KA 38-1                                 | !<br>- <del> </del> - | > -                   | -   ~                 |                            | 15                          | ₹                    | V                   | ٧                    | <4                   |
| 1                                                                                                                                                                                                  | KA 30-2                                 |                       | -   -                 | \<br>\                | -                          | 21                          | ۷,                   | ۷                   | ۲                    | L>                   |
| 0                                                                                                                                                                                                  | 17.4 38-1                               |                       | , -                   | 2                     | -                          | 18                          | ٧                    | ٧,                  | -<1                  | ₹                    |
| 1                                                                                                                                                                                                  | 2-52                                    | İ                     | · c                   | -                     | _                          | 96                          | ⊽                    | ۲۷                  | <1                   | ₹                    |
| 1                                                                                                                                                                                                  | DA 40.4                                 |                       |                       | -                     | -                          | 140                         | ₹                    | ٧                   | V.                   | V                    |
| 1                                                                                                                                                                                                  | DA 40.3                                 |                       | -                     | 2                     | -                          | 7.7                         | \<br>\<br>-          | ۲۷                  |                      | ^                    |
| 1                                                                                                                                                                                                  | 20.44.4                                 | -                     | _                     | <br> -                | -                          | 15                          | 7                    | <b>\</b>            | <b>√</b>             | ٧,                   |
| 0                                                                                                                                                                                                  | KA 41-1                                 | 1                     | 5 0                   | -                     | <br> <br> -                | 1.5                         | ٧                    | ⊽                   | ۲>                   | ۷,                   |
| 0                                                                                                                                                                                                  | KA 42-1                                 |                       | 5 5                   |                       | 9                          | 59                          | ٧                    | ٧                   | V                    | CBI                  |
| 0                                                                                                                                                                                                  | KA 45-                                  | 1                     | ,                     | -                     | 9 60                       | 79                          | ₹                    | ⊽                   | Į,                   | \4                   |
| 1                                                                                                                                                                                                  | KA 44-1                                 |                       |                       |                       |                            | 54                          | ₹                    | ⊽                   | ₹                    | V                    |
| 1                                                                                                                                                                                                  | KA 45-1                                 | -                     |                       |                       | 0 4                        | 20                          | ⊽                    | ₹                   | ۲                    | ⊽                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                              | KA 40-1                                 |                       | -                     | - 6                   | 4                          | 2                           | ⊽                    | ۷                   | ⊽                    |                      |
| 0     1     0     34     <1                                                                                                                                                                        | KA 46-2                                 |                       | - 6                   | 7                     | )<br>-                     | 12                          | ₹                    | ⊽                   | ⊽                    | ⊽                    |
| 0                                                                                                                                                                                                  | RA 47-1                                 | _                     | 2                     | - -                   | -   -                      | 2,                          | · V                  | V                   | V                    | ⊽                    |
| 0                                                                                                                                                                                                  | RA 48-1                                 |                       |                       |                       | ٥                          | 7                           | -                    | \<br>\<br>\         | ₽                    | ٧                    |
| 1                                                                                                                                                                                                  | RA 49-1                                 |                       | ٥                     | - -<br> -             |                            | 7 7 7                       | 0,10                 | 210                 | <10                  | ×10                  |
| 0                                                                                                                                                                                                  | RA 5-1                                  |                       |                       | -                     | _                          | 200                         | ?<br> <br> -         | 2 7                 | Ţ                    | V                    |
| 0                                                                                                                                                                                                  | RA 50-1                                 |                       | 0                     | -                     | ٥                          | 97                          | - -<br>- -           | 7                   |                      |                      |
| 0                                                                                                                                                                                                  | RA 51-1                                 |                       | 0                     | -                     | 0                          | C.                          | 7                    | <u> </u>            | 7                    | 7                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                              | RA 52-1                                 | _                     | 0                     | +                     | 0                          | <b>V</b>                    | V                    | · ·                 | -  <br>-             | -  <br>              |
| 0                                                                                                                                                                                                  | RA 53-1                                 |                       | 0                     | 1                     | 0                          | V                           | ⊽                    | V                   | ¥                    | <b>√</b>             |
| 1   2   75   54   54   54   54   54   54   54                                                                                                                                                      | RA 54-1                                 |                       | 0                     | -                     | 0                          | ,<br>V                      | ⊽                    | <u>\</u>            | \<br>\<br>           | ⊽                    |
| 1   2   2   140   <1   <1   <1   <1   <1   <1   <1   <                                                                                                                                             | DA 56.1                                 | <br> -                | -                     | -                     | 2                          | 7.5                         | ₹                    | !<br>ح              | ⊽                    | √                    |
| 0     1     1     49     <1                                                                                                                                                                        | DA 65.2                                 |                       | ,                     | 2                     | 2                          | 140                         | ⊽                    | ₽                   | √                    | V                    |
| 1   2   1   140   52   52   52   53   54   54   54   54   54   54   54                                                                                                                             | 200 A                                   |                       |                       | -                     | -                          | 49                          | √.                   |                     | ۲>                   | ₹                    |
| 1                                                                                                                                                                                                  | PA 56.2                                 | 1                     | -                     | 2                     |                            | 140                         | 7                    | ٧                   | 7                    | 7                    |
| 0     1     1     54     <1                                                                                                                                                                        | DA 57.1                                 |                       | -                     | <br>                  | <br> -                     | 130                         | ٧                    | ٧                   | V                    | √                    |
| 0     1     1     19     <1                                                                                                                                                                        | 20.50-1                                 |                       |                       | -                     | <br> <br> -                | 73                          | <b>V</b>             | <1                  | ₹                    | 7                    |
| 0         1         6         32         <1         <1           0         1         6         30         <1                                                                                       | DA 6. 1                                 |                       | 0                     | -                     | -                          | 19                          | ۲                    | ٧                   | ⊽.                   | ⊽                    |
| 0         1         6         30         <1         <1           0         1         6         37         <1                                                                                       | 100 kg                                  | 1                     | ,                     | -                     | 9                          | 32                          | ٧                    | <b>V</b>            |                      | V                    |
| 0         1         6         37         <1         <1           1         2         6         <1                                                                                                  | 2 2 2                                   |                       | ,                     | -                     | 9                          | 30                          | ₹                    | Ÿ                   | ۲-                   | ۲۷                   |
| 1     2     6     <1                                                                                                                                                                               | 1-10 AG                                 | <u> </u>              | , ,                   | -                     | 9                          | 37                          | ⊽                    | ⊽                   | ⊽                    | <1                   |
| 0         1         6         6         6         <1         <1           1         2         6         2.3         <1         <1           0         1         1         50         <1         <1 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | <br> -                | )<br>-                |                       | 9                          | ₹                           | ₹                    | ₹                   | 1>                   | \ <u>\</u>           |
| 1 2 6 2.3 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                   | TA 02-2                                 |                       | -   -                 | -                     | 9                          | 9                           | ٧                    | ₹                   | \<br>\               | <1                   |
|                                                                                                                                                                                                    | CA 63 2                                 |                       | ,                     | 2                     | 9                          | 2.3                         | ⊽                    | ⊽                   | <u>ا</u>             | ₩.                   |
|                                                                                                                                                                                                    | 7-50 40                                 | +                     | -   -                 |                       | -                          | <br> <br> <br> <br>         | V                    | ٧                   | V                    | 7                    |

Table 6-1. Pesticide Concentrations in Soils at Chevron Orlando, Florida

| delta-BHC<br>(mg/Kg)        | บ                                      | Ţ       | v       | ₹       | <b>√</b> | ⊽       | ⊽       | -10<br>V | <b>√</b>   | √10<br>×10 | <10    | ۷.      | <b>-1</b>          | <1      | <1      | ⊽         | ⊽          | Ţ        | √       | √       | <10    | <1    | ₽       | ⊽       | ٧,      | ₹        | <u>8</u> | 95      | 9       | <10     | ⊽           | 40      | <10      | 7       | ⊽           | √10<br>√10 |
|-----------------------------|----------------------------------------|---------|---------|---------|----------|---------|---------|----------|------------|------------|--------|---------|--------------------|---------|---------|-----------|------------|----------|---------|---------|--------|-------|---------|---------|---------|----------|----------|---------|---------|---------|-------------|---------|----------|---------|-------------|------------|
|                             | Ľ                                      | ľ       | Ľ       | "       |          | Ľ       | Ĺ       | V        | Ĺ          |            | _      |         |                    |         |         |           | _          |          |         | <br>    | _      |       |         |         |         | $\vdash$ |          | _       |         | -       |             |         | _        | _       | -           | <u> </u>   |
| gamma-BHC<br>(mg/Kg)        | ₩                                      | V       | ₹       | ⊽       | ٧        | ₹       | ⊽       | 0L>      | ⊽          | <10        | <10    | ₹       | ۲                  | ⊽       | ٠<br>ا  | <b>~1</b> | <b>1</b> > |          | ۲>      | ۸۱      | <10    | <1    | <1      | V       | ٧       | <1       | 3.4      | <10     | <10     | <10     | ۲           | <10     | <10      | 1.7     | `√          | <10        |
| beta-BHC<br>(mg/Kg)         | V                                      | ₩       | V       | ₹       | V        | \<br>V  | ⊽       | · 10     | V          | <10        | <10    | ⊽       |                    | ⊽       | ₹       | <1        | V          | <b>1</b> | ۲>      | ⊽       | <10    | ٧     | ₹       | ٧       | ٧       | 1        | <1       | <10     | <10     | <10     | ۷٠          | <10     | <10      | <1      | ۷.          | <10        |
| alpha-BHC<br>(mg/Kg)        | ⊽                                      | V       | V       | V       | V        | V       | V       | 101>     | Ÿ          | <10        | <10    | ⊽       | \<br>\<br>\        | ۲۷      | ₹       | ۲         | ٧          | V        | ⊽       | ⊽       | 01×    | ⊽     | ⊽       | ⊽       | ₽       | ⊽        | 1.9      | <10     | <10     | <10     | \<br>\<br>\ | <10     | <10      | ٧       | ۷۱          | <10        |
| Total -Chlordane<br>(mg/Kg) | V                                      | 08      | 38      | 5 \     | V        | 36      | 11      | OBO.     | <b>2</b> 5 | 620        | 92     | 62      | 9.2                | 1,3     | ₽       | 3.9       | 4.4        | 1.3      | 7.7     | 25      | 190    | 120   | 2       | 26      | 160     | 28       | 65       | 52      | <10     | 130     | ∇           | <10     | <10      | 1.7     | \<br>\<br>\ | <10        |
| Excavation Depth<br>(Feet)  | \\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | - (     | 4 0     | 1 6     | 7        | -   -   | -       | - 6      | 2 0        | 1          |        | 9       | \$                 | 9       | 9       | 9         | 0          | 0        | 0       | 0       | -      | -     | 0       | 0       | 0       | •        | 4        | 4       | 4       | 4       | 4           | 4       | 4        | 10      | 10          | 40         |
| Lower Depth<br>(Feet)       |                                        | 2 -     | - -     | 7 6     | 2        | -       | - -     | - -      | -   ~      | 2          | - 6    |         | -                  | _       |         | _         | -          |          |         | -       |        |       | -       | -       |         | 2        | 60       | 4       | 5       | 2       | 3           | 4       | ro.      | 2       | 60          | 4          |
| Upper Depth<br>(Feet)       |                                        | 7       | 5 4     | - 0     | 7 0      | 2       |         |          | ، د        | 7          | > -    | - 6     | 0                  |         | s c     |           |            | , 0      |         | ماد     | ) C    | > -   |         |         |         | -        | 2        | က       | 4       | -       | 2           | 3       | 4        |         | 2           | 8          |
| Duplicate                   |                                        |         |         |         |          |         |         |          |            |            |        |         |                    |         |         |           | -          |          |         |         |        |       |         |         |         | -        |          |         | <br> -  |         | _           | <br> -  | <u> </u> | +       | <br> -      |            |
| Sample ID                   |                                        | KA 64-3 | RA 65-1 | KA 65-2 | KA 65-3  | KA 66-1 | KA 6/-1 | RA 68-1  | RA 69-1    | KA 69-3    | KA /-1 | DA 70 4 | 10 74 4<br>10 74 4 | DA 72 4 | DA 73 4 | RA 74-1   | DA 76.1    | BA 77-1  | DA 78 1 | DA 70 1 | 10 8 4 | D 0 0 | PA 80.1 | DA 81.1 | DV 80.4 | PA 82-2  | RA 83-3  | RA 83-4 | RA 83-5 | RA 84-2 | PA 84.3     | RA 84-4 | RA 84-5  | RA 85-7 | RA 85-3     | RA 85.4    |

Table 6-1. Pesticide Concentrations in Soils at Chevron Orlando, Florida

|                             | ···· | _,      |         |         | ,      | ,      |         | <del>-</del> , |         |         | - 7     | _       |         |         |         |         |        |         | _       | <u> </u> | ι-      | _       | $\overline{}$ | Ψ            | $\top$  | Τ       | $\top$  | T    | Τ.    | Т        | T            | Т       | _       | 7       |         | 1                                       | П           |                 |
|-----------------------------|------|---------|---------|---------|--------|--------|---------|----------------|---------|---------|---------|---------|---------|---------|---------|---------|--------|---------|---------|----------|---------|---------|---------------|--------------|---------|---------|---------|------|-------|----------|--------------|---------|---------|---------|---------|-----------------------------------------|-------------|-----------------|
| delta-BHC<br>(mg/Kg)        | 3.1  | ×10     | ۲۷      | 9       | ۷,     | CBI    | ⊽       | ۲              | <10     | √       | √       | <10     | <10     | (B)     | <10     | <10     | 19     | <10     | <100    | ٧        | <10     | <10     | ⊽             | · 10         |         | 5       | 7       | , ,  |       | \<br>    | - 10<br>- 10 | 3.7     | 138     | <10     | 140     | <10                                     | <10         | <10             |
| gamma-BHC<br>(mg/Kg)        | 2.2  | <10     | 1>      | <10     | · ·    | <10    | <1      | <b>-&lt;1</b>  | <10     | ₹       | ۲       | <10     | <10     | <100    | <10     | <10     | 14     | <10     | ×100    | ⊽        | <10     | 210     |               | V40          | V       | 7 7     | 2 7     | , ,  |       | ⊽ :      | Q.           | ⊽       | ×10     | <10     | 21      | <10                                     | <10         | <10             |
| beta-BHC<br>(mg/Kg)         | ₹.   | <10     | Ç       | <10     | - t>   | <10    | <۱>     |                | <10     | 1.6     | <1      | <10     | <10     | <100    | <10     | <10     | 01×    | <10     | <100    | ⊽        | <10     | <10     | ₹ ⊽           |              | 2 7     | 7 5     | 2 7     | -    | 015   | 1.1      | √10<br>√10   | 2.3     | - 17    | <10     | 20      | ×10                                     | 01·>        | <10             |
| alpha-BHC<br>(mg/Kg)        | 1.5  | <10     | ₹       | <10     | V      | 24     | ٧       | ٧              | <10     | <br> -  | - ↓>    | <10     | <10     | ×100    | <10     | <10     | ×ر0    | <10     | <100    | ⊽        | <10     | /10     | ? ₹           | 7 7          | ? ;     | 7       | 2 ,     | -  : | c10   | <u>.</u> | <10          | ,<br>,  | <10     | <10     | 88      | ×40                                     | <10         | د <u>ا</u> 0    |
| Total -Chlordane<br>(mg/Kg) | 79   | 290     | 33      | 110     | 2.3    | 450    | 28      | 120            | <10     | 51      | 1.4     | 84      | 24      | 7900    | 100     | 210     | 380    | 140     | 1400    | 46       | 190     | 080     | 70            | 00           | 007     | 9       | 230     | \$   | 230   | 84       | 490          | 21      | 700     | 74      | 400     | 46                                      | 87          | 16              |
| Excavation Depth<br>(Feet)  | 10   | 2       | 2       | -       | -      | 1      | 10      | 10             | 40      | -       |         |         | -       | 10      | 1 5     | 9       | Ę      | 2 2     | = =     | 2 ~      | 1 5     | 2 5     | 2 9           |              | 2 ;     | 01      | 10      | 0    | 7     | 7        | 2            | 2       | 4       | 4       |         |                                         |             | -               |
| Lower Depth<br>(Feet)       | 6    | 2       | ı m     | 2       | 4      |        | 2       | -c             | 4       | 2       | 100     | 2       | 1 6     | , ,     | 1 "     | 2 4     | ٠      | 2 0     | 1 ~     | 315      | 7 (     | ,       | 4 (           | 2            | 4       | 2       | 4       | -    | 1     | 2        | -            | 2       | _       | 0       | -       | 2                                       | <br> <br> - | 2               |
| Upper Depth<br>(Feet)       | ſ    | 1       |         | 1 -     |        |        | ,       |                | 1 (0)   | -       | 2       | -       | ,       | 7       | - (     | 7 6     | > <    | +       | - (     | 7        | _ ,     | _       | m             | <br> -<br> - | က       | -       | 3       | 0    | 0     | 1        | 0            | -       | 0       | ,       | - 6     |                                         | ح د         | \$ <del>-</del> |
| Duplicate                   |      |         |         |         |        |        |         |                |         | <br> -  |         |         | -       |         | -       |         | <br> - | <br> -  | -       |          |         |         |               | -            |         |         |         |      |       | -        | <u> </u>     | -       | 1       |         |         |                                         |             |                 |
| Sample ID                   | 0 00 | KA 30-3 | KM 01-2 | DA 60 3 | 2-00-V | NA 004 | DA 90.3 | 24 00 3        | RA 90~3 | DA 04.2 | DA 04.3 | C CO VO | KA 32-2 | KA 32-3 | KA 33-2 | KA 93-3 | 25.00  | KA 93-0 | KA 99-2 | KA 94-3  | KA 96-2 | RA 97-2 | RA 97-4       | RA 98-2      | RA 98-4 | RA 99-2 | RA 99-4 | RT 1 | RT 10 | RT 10-2  | RT 11        | DT 41.2 | PT 13-1 | 07 42 9 | TT 12-2 | 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | K   13-2    | RT 14-2         |

3720/03

Table 6-1. Pesticide Concentrations in Soils at Chevron Orlando, Florida

| No. 15   15   15   15   15   15   15   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample ID                | Duplicate    | Upper Depth<br>(Feet) | Lower Depth<br>(Feet) | Excavation Depth<br>(Feet) | Total -Chlordane<br>(mg/Kg) | alpha-BHC<br>(mg/Kg) | beta-BHC<br>(mg/Kg) | gamma-BHC<br>(mg/Kg) | delta-BHC<br>(mg/Kg) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------|-----------------------|-----------------------|----------------------------|-----------------------------|----------------------|---------------------|----------------------|----------------------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |              | ç                     | -                     | 2                          | 350                         | 35                   | <10                 | <10                  | <10                  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | KI 13                    |              | 2                     | -   ~                 | 2                          | 25                          | <10                  | <10                 | <10                  | <10                  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | K1 13-2                  |              | -   -                 | 1 -                   | -                          | 23                          | ₹                    | ⊽                   | - <4                 |                      |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | R1 10-1                  | <br> <br> -  |                       | -                     | -                          | 43                          | 5.9                  | 1.6                 | <1                   | ٧,                   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |              | 0                     | <br> -                |                            | 15                          | V                    | <b>V</b>            | <1                   | <1                   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | KI 10-1                  | <br> <br> -  | 2 0                   | -                     |                            | 37                          | \<br>\               | ₹                   | \<br>\<br>           | ۸۲                   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1-61 17                  | <br> -       | , -                   | -                     | -                          | 16                          | ۷.                   | <1                  | ·                    | ۲,                   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DT 20.4                  |              |                       | <br> -                | 9                          | ₹                           | ۷۱>                  | <ا                  | ₹                    | ٧                    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DT 22.5                  |              | \-                    | 2                     | 2                          | 17                          | ٠<br>۲۷              | \^                  | ۷.                   | ۲۷                   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N 22-2                   |              | 2                     | m                     | 2                          | 380                         | <100                 | <100                | ×100                 | <100                 |
| 4         5         2         55         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 71 22 3                  |              | 1 6                   | 4                     | 2                          | 44                          | ×10                  | <10                 | <10                  | <10                  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | K1 22-4                  | <br> -       | ) <b>S</b>            |                       |                            | 55                          | 2.50                 | <10                 | <10                  | <10                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | K1 22-0                  | -            | , .                   | 3 (2                  | 100                        | 120                         | 23                   | <10                 | 19                   | 11                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | K1 22-0                  | <br> -<br> - | 7                     | 5                     | 1                          | 77                          | <10                  | <10                 | ×10                  | <10                  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | KI 23-2                  |              | - (                   | 116                   |                            | 45                          | <10                  | ×10                 | <10                  | c10                  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RT 23-3                  | -            | 7 6                   | 3                     |                            |                             | V                    | ₹                   | ⊽                    | ₹                    |
| 4         5         6         7         16         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R1 23-4                  |              | ?                     | 1 L                   |                            | . 5                         | 45                   | V-V                 | <10                  | 1 <10                |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RT 23-5                  |              | 4                     | 0                     | ,                          | 46                          | 210                  | 200                 | - V                  | 0F.>                 |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RT 23-6                  | -            | c ·                   | ١                     | - 0                        | 2 4                         | 2 5                  | 140                 | 740                  | QLV                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RT 24-2                  |              | -                     | 2                     | 7                          |                             | -<br>-<br>-<br>-     | 2 7                 | } ⊽                  | <u>}</u>             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RT 24-3                  |              | 2                     | 3                     | 7                          | <u>-</u>                    | <u> </u><br>         | -<br>-<br>-         | ,                    |                      |
| 1   2   57   c1   c1   c1     2   3   4   c1   c1   c1     3   4   c1   c1   c1   c1     3   4   c1   c1   c1   c1     3   4   7   d   c1   c1     4   5   7   d   c10   c10     5   6   5   c1   c1   c1     7   18   c10   c10   c10     8   6   5   c1   c1   c1     9   7   d   d   c1   c1     9   8   c1   c1   c1     9   6   2   c1   c1   c1     9   6   2   c1   c1   c1     9   7   d   d   d   d   d     9   7   d   d   d   d   d     9   8   c1   c1   c1   c1     9   9   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   0   d     9   0   0   d     9   0   0   d     9   0   0   d     9   0   0   d     9   0   0   d     9   0   0   d     9   0   0   d     9   0   0   d     9   0   0   d     9   0   0   d     9   0   0   d     9   0   0   d     9   0   0   d     9   0   0   d     9   0   0   d     9   0   0   d     9   0   0   d     9   0   0   d     9   0 | RT 24-4                  |              | ო                     | 4                     | 2                          | ⊽                           | ⊽                    | <u>.</u>            | V .                  | · ·                  |
| 1         2         5.7         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1 </td <td>RT 25-2</td> <td></td> <td>-</td> <td>2</td> <td>,<br/></td> <td>4.4</td> <td>⊽</td> <td>V</td> <td>V</td> <td>⊽</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RT 25-2                  |              | -                     | 2                     | ,<br>                      | 4.4                         | ⊽                    | V                   | V                    | ⊽                    |
| 2         3         4         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1 <td>PT 26-3</td> <td> </td> <td> <br/> </td> <td>2</td> <td>2</td> <td>5.7</td> <td>&lt;4</td> <td>٧.</td> <td>⊽</td> <td><b>.</b></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PT 26-3                  |              | <br>                  | 2                     | 2                          | 5.7                         | <4                   | ٧.                  | ⊽                    | <b>.</b>             |
| 3         4         4         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1 <td>DT 27.3</td> <td> <br/> -</td> <td>6</td> <td>9</td> <td>4</td> <td>₹</td> <td>⊽</td> <td>۷,</td> <td>⊽</td> <td>٧</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DT 27.3                  | <br> -       | 6                     | 9                     | 4                          | ₹                           | ⊽                    | ۷,                  | ⊽                    | ٧                    |
| 2         3         7         18         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1 <td>DT 27 A</td> <td></td> <td>67</td> <td>4</td> <td>4</td> <td>₽</td> <td>⊽</td> <td>۲</td> <td>&lt;1</td> <td>v</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DT 27 A                  |              | 67                    | 4                     | 4                          | ₽                           | ⊽                    | ۲                   | <1                   | v                    |
| 3         4         7         4         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DT 28.2                  |              |                       | (F)                   |                            | 18                          | V                    | ٧                   |                      | ₹                    |
| 4         5         7         18         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11         <11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DT 28.4                  |              | 1 6                   | 4                     | 7                          | 4                           | ∇                    | ۲۷                  | ۲۷                   | ٧                    |
| 2         3         2         5.6         <1         1.6         <1           3         4         2         24         4.2         3.4         1.1           2         1         1         83         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DT 20 E                  |              | 7                     | ري.                   |                            | 18                          | <10                  | <10                 | <10                  | <10                  |
| 3         4         2         24         4.2         3.4         1.1           0         1         1         83         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D-02-17                  |              | .   ~                 | 3                     | 2                          | 5.6                         | ⊽                    | 1.6                 | ٧.                   | 1.5                  |
| 0         1         1         83         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1 <td>N 23-7</td> <td><u> </u></td> <td>į (r</td> <td>4</td> <td>2</td> <td>24</td> <td>4.2</td> <td>3.4</td> <td>1.1</td> <td>5.6</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N 23-7                   | <u> </u>     | į (r                  | 4                     | 2                          | 24                          | 4.2                  | 3.4                 | 1.1                  | 5.6                  |
| 2     3     2     <1     <1     <1     <1       3     4     2     1,2     <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | K1 234                   | <br> -       |                       | -  -                  |                            | 83                          | ⊽                    | ₹                   | ٧.                   | <1                   |
| 3         4         2         1,2         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1 <td>0 00 10</td> <td>-</td> <td>3 6</td> <td>. "</td> <td>2</td> <td>⊽</td> <td>₹</td> <td>₹</td> <td>₹</td> <td><b> </b></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 00 10                  | -            | 3 6                   | . "                   | 2                          | ⊽                           | ₹                    | ₹                   | ₹                    | <b> </b>             |
| 4         5         2         1.6         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1 <td>N 30.7</td> <td>\<br/>-</td> <td>1 6</td> <td>7</td> <td>2</td> <td>1,2</td> <td>۲</td> <td>⊽</td> <td>₹ .</td> <td><b>\</b></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N 30.7                   | \<br>-       | 1 6                   | 7                     | 2                          | 1,2                         | ۲                    | ⊽                   | ₹ .                  | <b>\</b>             |
| 5         6         2         <1         <1         <1         <1           2         3         4         100         <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 20 17                  | +            | > <                   |                       |                            | 9                           | Į<br>V               | 7                   | \<br>\               | - <1                 |
| 2         3         4         100         <10         <10           3         4         4         68         <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 30-0<br>9 0-1<br>9 0-1 | <br> <br>    | · ·                   | 1                     |                            | ⊽                           | 7                    | 7                   | ⊽                    | ٧                    |
| 3 4 4 68 <10 <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | KT 30-0                  | <br> -       | ,                     | , 6                   | 4                          | 100                         | ×10                  | <10                 | <10                  | <10                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 12 12                  | -            | 1 ~                   | ,   <sub>4</sub>      | 4                          | 88                          | <10                  | √10<br>10           | <10                  | 10>                  |

Table 6-1. Pesticide Concentrations in Soils at Chevron Orlando, Florida

| Sample ID      | Duplicate    | Upper Depth<br>(Feet) | Lower Depth<br>(Feet) | Excavation Depth<br>(Feet) | Total -Chlordane<br>(mg/Kg) | alpha-BHC<br>(mg/Kg) | beta-BHC<br>(mg/Kg) | gamma-BHC<br>(mg/Kg) | delta-BHC<br>(mg/Kg) |
|----------------|--------------|-----------------------|-----------------------|----------------------------|-----------------------------|----------------------|---------------------|----------------------|----------------------|
| DT 24 6        |              |                       | 5                     | 4                          | 48                          | <10<br><10           | ۰ <del>۱</del> ۵    | <10                  | <10                  |
| KI 31-0        |              | r LC                  | 9                     | 4                          | 39                          | 3.3                  | <br> -              | 4.7                  | 3.1                  |
| DT 39.7        |              | 9                     |                       |                            | 1.2                         | ₹                    | <u>ا</u>            | Ų                    | ₹                    |
| RT 33.7        |              | မ                     | 7                     |                            | 18                          | 9.9                  | 2.1                 | ₹.                   | 1.7                  |
| DT 34 7        |              | 9                     | 7                     | 2                          | 57                          | 11                   | 3.3                 | 9.4                  | 7.7                  |
| 1 2            |              | 0                     |                       | -                          | 2.1                         | \<br>\               | 1>                  | ⊽                    | ⊽                    |
| DT 5.1         |              |                       | -                     | 0                          | 3.4                         | ·                    | ٠<br>۲              | V                    | ⊽                    |
| DT 7           | _            |                       | \<br>\-               | -                          | 540                         | <10                  | 44                  | <10                  | <10                  |
| ) LG           |              | , 0                   | -                     | 2                          | - 69                        | ٧                    | 3.1                 | V                    | ,<br>,               |
| 0 10           |              |                       | -                     | 2                          | 530                         | <10                  | CBI                 | <10                  | <10                  |
| 0103           |              | , _                   | 2                     | 2                          | 350                         | <10                  | <10                 | <10                  | 16                   |
| K1 3-4         | \<br>\<br>\  | -   ~                 | 1 4                   | 12                         | V                           | ⊽                    | ₹                   | ۲>                   | -                    |
| 3F-1           |              | 7                     | 4                     | 20                         | 61                          | <10                  | <10                 | <10                  | <10                  |
| OF-10          |              |                       |                       | 10                         | 1.3                         | ₹                    | ₹                   | 7                    | <1                   |
| OP-11          |              | -                     |                       | 9                          | 34                          | ⊽                    | ⊽                   | ۲>                   | 2.1                  |
| 3P-12          | +            | *                     | 1 4                   | 1 00                       | 400                         | 01×                  | <10                 | <10                  | 23                   |
| 3P-13          | 1            |                       |                       | : =                        | 400                         | - 01>                | <10                 | ot>                  | <10                  |
| SP-14          | -            |                       | r <                   | 2 4                        | 170                         | √10<br><10           | <10                 | ×10                  | <10                  |
| 01-10<br>04-10 |              | •                     | \ \ \ \ \             | 2                          | 460                         | V-10                 | <10                 | <10                  | <10                  |
| 0F-10          |              | +   -                 |                       | ) (C                       | 13                          | 2                    | ⊽                   | V                    | -<1<br>-<1           |
| SP-17          |              |                       |                       |                            | 150                         | <10                  | <10                 | <10                  | <10                  |
| SF-10          | <br> -       | *   5                 | +   ~                 | 4                          | 8                           | 2.5                  | ₹                   | ٧                    | 2.5                  |
| 81-18<br>0 00  |              | ,                     |                       | 100                        | 120                         | <10                  | <10                 | را0<br>د             | <10                  |
| 2F-Z           | -            | + =                   | <b>V</b>              | 4                          | 73                          | ~10                  | ·<br>^10            | <10                  | <10                  |
| 25-70          | <br> -       | -                     | r                     | 4                          | 46                          | 1.4                  | ₹                   | ⊽                    | 1.8                  |
| SP-21          |              | - 4                   | 4                     | 4                          |                             | 4.1                  | 1.1                 | 5.9                  | 5.6                  |
| SP.3           |              | 4                     | 4                     | 19                         | 7.3                         | <10                  | <10                 | 40                   | <10                  |
| Sp.4           |              | 4                     | 4                     | 4                          | 8.7                         | \<br>-               |                     | ⊽                    | ⊽                    |
| SP.5           |              | 4                     | 4                     | 10                         | 73                          | 1.2                  | V                   | 1.5                  | 2.7                  |
| 9-d8           |              | 4                     | 4                     | 10                         | 52                          | 3.5                  | 3.6                 | 3.6                  | 4.6                  |
| 2 do           |              | 4                     | 4                     | 10                         | 190                         | <10                  | <10                 | <10                  | <10                  |
| SP-8           |              | 14                    | 4                     | 40                         | 230                         | 23                   | <10                 | 37                   | ×10                  |
| 8p-9           | <u> </u>     | 4                     | 4                     | 10                         | \                           | V                    | ⊽                   | ¥                    | <u>ا</u><br>د        |
| SPT-02-01      |              | 2                     | 4                     | 2                          | <10                         |                      |                     |                      |                      |
| SPT-02-02      | <u></u>      | 4                     | 9                     | 2                          | <10                         |                      |                     | 1                    |                      |
| SPT-03-01      | <del> </del> | 2                     | 4                     | 0                          | <10                         |                      |                     |                      |                      |
| SPT-03-02      |              | 4                     | 9                     | 0                          | <10                         |                      |                     | -                    |                      |

372003

Table 6-1. Pesticide Concentrations in Soils at Chevron Orlando, Florida

|                                                                                                                                                                 | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | (i sect) | 1001   | (mo/Ka) | (ma/Ka) | (mo/Ka) | 2          |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------|--------|---------|---------|---------|------------|-----|
| SPT-04-01 SPT-04-02 SPT-04-02 SPT-05-01 SPT-05-02 SPT-06-03 SPT-06-03 SPT-06-2.5 SPT-07-07 SPT-07-07 SPT-07-07 SPT-08-01 SPT-09-01 SPT-09-01 SPT-10-01          | 2 4 2 4 2 4                             |          | (reel) | (Rugin) | (B) (B) | (6)     | (B. (B. () | /6\ |
| SPT-04-02 SPT-05-01 SPT-05-01 SPT-06-01 SPT-06-03 SPT-06-03 SPT-06-25 SPT-07-01 SPT-07-04 SPT-09-01 SPT-09-01 SPT-09-01 SPT-09-01 SPT-09-01                     | 4 7 4 7 4                               | 4        | 0      | <10     |         |         |            |     |
| SPT-05-01 SPT-05-02 SPT-06-01 SPT-06-02 SPT-06-03 SPT-06-2.5 SPT-07-01 SPT-07-01 SPT-07-01 SPT-08-02 SPT-09-01 SPT-09-01 SPT-09-01 SPT-09-01                    | 7 4 7 4 0                               | 9        | 0      | <10     |         |         |            |     |
| SPT-05-02 SPT-06-01 SPT-06-03 SPT-06-03 SPT-06-03 SPT-06-25 SPT-06-25 SPT-07-02 SPT-07-03 SPT-08-01 SPT-08-01 SPT-09-01 SPT-09-02 SPT-09-02 SPT-09-02 SPT-09-02 | 4 2 4                                   | 4        | 4      | 15      |         | i       |            |     |
| SPT-06-01 SPT-06-02 SPT-06-03 SPT-06-03 SPT-06-25 SPT-06-25 SPT-07-01 SPT-07-03 SPT-08-01 SPT-09-01 SPT-09-01 SPT-09-01 SPT-10-01                               | 2 4                                     | 9        | 4      | <10     |         |         |            | ŀ   |
| SPT-06-02 SPT-06-03 SPT-06-25 SPT-06-2.5 SPT-07-01 SPT-07-03 SPT-08-01 SPT-09-01 SPT-09-01 SPT-09-01 SPT-10-01                                                  | 4                                       | 4        | 4      | 43      |         |         |            |     |
| SPT-06-03 SPT-06-2.5 SPT-06-2.5 SPT-07-07 SPT-07-03 SPT-08-01 SPT-09-01 SPT-09-01 SPT-09-02 SPT-10-01                                                           |                                         | 9        | 4      | 18      |         |         |            |     |
| SPT-06-2.5<br>SPT-07-01<br>SPT-07-02<br>SPT-08-01<br>SPT-09-01<br>SPT-09-01<br>SPT-09-02<br>SPT-10-01                                                           | -                                       | 10       | 4      | <10     |         |         |            |     |
| SPT-07-01<br>SPT-07-02<br>SPT-07-03<br>SPT-08-01<br>SPT-09-01<br>SPT-09-02<br>SPT-10-01<br>SPT-10-02                                                            | 9                                       | æ        | 4      | 28      |         |         |            | :   |
| SPT-07-02<br>SPT-07-03<br>SPT-08-01<br>SPT-09-01<br>SPT-09-01<br>SPT-10-01<br>SPT-10-01                                                                         | 2                                       | 4        | 4      | 11      |         |         |            |     |
| SPT-07-03<br>SPT-08-01<br>SPT-08-02<br>SPT-09-01<br>SPT-10-01<br>SPT-10-01                                                                                      | 4                                       | 9        | 4      | <10     |         |         |            |     |
| SPT-08-01<br>SPT-08-02<br>SPT-09-01<br>SPT-09-02<br>SPT-10-01<br>SPT-10-02                                                                                      | ω                                       | 9        | 4      | <10     |         |         |            |     |
| SPT-08-02<br>SPT-09-01<br>SPT-09-02<br>SPT-10-01<br>SPT-10-02                                                                                                   | 2                                       | 4        | -      | <10     |         |         |            |     |
| SPT-09-01<br>SPT-09-02<br>SPT-10-01<br>SPT-10-02                                                                                                                | 4                                       | 9        | 1      | <10     |         |         |            |     |
| SPT-09-02<br>SPT-10-01<br>SPT-10-02                                                                                                                             | 2                                       | 4        | 1      | <10     |         |         |            |     |
| SPT-10-01<br>SPT-10-02                                                                                                                                          | 4                                       | 9        | 1      | <10     |         |         |            |     |
| SPT-10-02                                                                                                                                                       | 2                                       | 4        | 0      | <10     |         |         |            |     |
|                                                                                                                                                                 | 4                                       | 9        | 0      | v10     |         |         |            |     |
| SPT-11-01                                                                                                                                                       | 7                                       | 4        | 0      | <10     |         |         |            |     |
| SPT-11-02                                                                                                                                                       | 4                                       | 9        | 0      | <10     |         |         |            |     |
| SPT-12-01                                                                                                                                                       | 2                                       | 4        | 0      | <10     |         |         |            |     |
| SPT-12-02                                                                                                                                                       | 4                                       | 9        | 0      | <10     |         |         |            |     |
| SPT-13-01                                                                                                                                                       | 2                                       | 4        | -      | <10     |         |         | i          |     |
| SPT-13-02                                                                                                                                                       | 4                                       | 9        | 1      | <10     |         |         |            |     |
| SPT-14-01                                                                                                                                                       | 2                                       | 4        |        | ×10     |         |         |            |     |
| SPT-14-02                                                                                                                                                       | 4                                       | 9        | •      | <10     |         |         |            |     |
| SPT-15-01                                                                                                                                                       | 2                                       | 4        | -      | <10     |         |         |            |     |
| SPT-15-02                                                                                                                                                       | 4                                       | 9        | 1      | <10     |         |         |            |     |
| SPT-16-01                                                                                                                                                       | 2                                       | 4        | 9      | 20      |         |         |            |     |
| SPT-16-02                                                                                                                                                       | 4                                       | 9        | 9      | 13      |         |         |            |     |
| SPT-16-03                                                                                                                                                       | 80                                      | 10       | 9      | !       |         |         |            |     |
| SPT-16-2.5                                                                                                                                                      | 9                                       | 8        | 9      | 16      |         |         |            |     |
| SPT-17-01                                                                                                                                                       | 2                                       | 4        | 10     | 88      |         |         |            |     |
| SPT-17-02                                                                                                                                                       | 4                                       | 9        | 9      | 295     |         |         |            |     |
| SPT-17-03                                                                                                                                                       | 8                                       | 10       | 10     | 142     | -       |         |            |     |
| SPT-18-01                                                                                                                                                       | 2                                       | 4        | 10     | 38      |         |         |            |     |
| SPT-18-02                                                                                                                                                       | 4                                       | 9        | 10     | 12      |         |         |            |     |
| SPT-18-03                                                                                                                                                       | 82                                      | 10       | 10     | <10     | -<br>   |         | _          |     |

Table 6-1. Pesticide Concentrations in Soils at Chevron Orlando, Florida

| Sample ID   | Duplicate    | Upper Depth<br>(Feet) | Lower Depth<br>(Feet) | Excavation Depth<br>(Feet) | Excavation Depth Total -Chlordane (Feet) (mg/Kg) | alpha-BHC<br>(mg/Kg) | beta-BHC<br>(mg/Kg) | gamma-BHC<br>(mg/Kg) | delta-BHC<br>(mg/Kg) |
|-------------|--------------|-----------------------|-----------------------|----------------------------|--------------------------------------------------|----------------------|---------------------|----------------------|----------------------|
| CDT 18 2 5  |              | 9                     | 80                    | 10                         | <10                                              |                      |                     |                      |                      |
| SPT-19-01   |              | 2                     | 4                     | <br>                       | <10                                              |                      |                     |                      |                      |
| SPT-19-02   |              | 4                     | 9                     | 1                          | <10                                              |                      |                     |                      |                      |
| SPT-19A-2.5 | <u> </u>     | 9                     | 8                     | 1                          | <10                                              |                      | ļ                   |                      |                      |
| SPT-20-01   | ļ            | 2                     | 4                     | 1                          | √10<br>√10                                       |                      |                     |                      |                      |
| SPT-20-02   | !            | 4                     | 9                     | 1                          | <10                                              |                      | !                   |                      |                      |
| SPT-20-03   |              | 8                     | 9                     |                            | <10                                              |                      |                     |                      |                      |
| SPT-21-01   |              | 2                     | 4                     | 2                          | <10                                              |                      |                     |                      |                      |
| SPT-21-02   | ļ<br> <br> - | 4                     | ç                     | 2                          | <10                                              |                      |                     |                      | i                    |
| SPT-21-03   |              | 8                     | 10                    | 2                          | <10                                              |                      |                     |                      |                      |
| SPT-24-01   |              | 2                     | 4                     | 1                          | <10                                              |                      |                     |                      |                      |
| SPT-24-02   |              | 4                     | g                     | -                          | 28                                               |                      |                     |                      | Ì                    |
| SPT-24-03   |              | 8                     | 9                     | <b>-</b>                   | <10                                              |                      |                     |                      |                      |
| SPT-25-01   | <u> </u>     | 2                     | 4                     | ,                          | <10                                              |                      |                     |                      |                      |
| SPT-25-02   | <u> </u>     | 4                     | 9                     | 1                          | <10                                              |                      |                     |                      |                      |
| SPT-26-01   |              | 2                     | 4                     |                            | <10                                              |                      |                     |                      |                      |
| SPT-26-02   |              | 4                     | 9                     |                            | ₹0                                               |                      |                     |                      |                      |
| SPT-27-01   |              | 2                     | 4                     | 10                         | 23                                               |                      |                     |                      |                      |
| SPT-27-02   | _            | 4                     | 9                     | 10                         | 14                                               |                      |                     |                      |                      |
| SPT-27-03   |              | 8                     | 10                    | 10                         | 13                                               | _                    |                     |                      |                      |
| SPT-27-2.5  |              | 9                     | 8                     | 10                         | 13                                               |                      |                     | _                    |                      |
| SPT-28-01   |              | 2                     | 4                     | 10                         | <b>3</b> 5                                       | -                    |                     |                      |                      |
| SPT-28-02   |              | 4                     | 9                     | 10                         | 244                                              |                      |                     |                      |                      |
| SPT-28-03   |              | <u></u> ω             | 10                    | 10                         | 249                                              |                      |                     |                      |                      |
| SPT-28-2.5  | <br>         | 9                     | 8                     | 10                         | 205                                              |                      |                     |                      |                      |
| SPT-29-01   |              | 2                     | 4                     | 9                          | 13                                               |                      |                     |                      |                      |
| SPT-29-02   |              | 4                     | 9                     | 9                          | 10                                               |                      |                     |                      |                      |
| SPT-29-03   |              | 8                     | 10                    | 9                          | <10                                              |                      |                     | 1                    |                      |
| SPT-29-2.5  |              | 9                     | 8                     | 9                          | 40                                               |                      |                     |                      |                      |
| SPT-30-01   |              | 2                     | *                     | 1                          | <10                                              |                      |                     |                      |                      |
| SPT-30-02   |              | 4                     | 9                     | +                          | 7                                                |                      |                     |                      |                      |
| SPT-30-2.5  |              | 9                     | 8                     | 1                          | <10                                              |                      |                     |                      |                      |
| SPT-31-01   | ļ<br>!       | 2                     | 4                     | 1                          | <b>√10</b>                                       |                      |                     |                      | _                    |
| SPT-31-02   |              | 4                     | 9                     | -                          | <10                                              | 4                    |                     |                      |                      |
| SPT-32-01   |              | 2                     | 4                     |                            | ~10                                              |                      |                     |                      |                      |
| SPT-32-02   |              | 4                     | 9                     | -                          | ×10                                              | -                    |                     | !                    |                      |
| TO CO LOS   |              | ,                     | 4                     | 0                          | ×10                                              |                      |                     |                      |                      |

Table 6-1. Pesticide Concentrations in Soils at Chevron Orlando, Florida

| Sample ID  | Duplicate | Upper Depth<br>(Feet) | Lower Depth<br>(Feet) | Excavation Depth Total -Chlordane (Feet) (mg/Kg) | Total -Chlordane<br>(mg/Kg) | alpha-BHC<br>(mg/Kg) | beta-BHC<br>(mg/Kg) | gamma-BHC<br>(mg/Kg) | delta-BHC<br>(mg/Kg) |
|------------|-----------|-----------------------|-----------------------|--------------------------------------------------|-----------------------------|----------------------|---------------------|----------------------|----------------------|
| CDT 22 00  |           | 4                     | 9                     | 0                                                | <10                         |                      |                     |                      |                      |
| SPT-33-03  | İ         | 8                     | 10                    | 0                                                | <10                         |                      |                     |                      |                      |
| SPT-34-01  |           | 2                     | 4                     | 0                                                | <10                         | 1                    |                     |                      |                      |
| SPT-34-02  |           | 4                     | 9                     | 0                                                | ×10                         |                      |                     |                      |                      |
| SPT-35-01  |           | 2                     | 4                     | 0                                                | <10                         |                      |                     |                      |                      |
| SPT-35-02  | ļ         | 4                     | 9                     | 0                                                | <10                         |                      |                     |                      |                      |
| SPT-36-01  | <br> -    | 2                     | 4                     | 0                                                | <10                         |                      |                     |                      |                      |
| SPT-36-02  |           | 4                     | ထ                     | 0                                                | <10                         |                      |                     |                      |                      |
| SPT-37-01  |           | 2                     | 4                     | 0                                                | 11                          |                      |                     |                      |                      |
| SPT-37-02  |           | 4                     | 9                     | 0                                                | 28                          |                      |                     |                      |                      |
| SPT-37-03  |           | 8                     | 9                     | 0                                                | <10                         |                      |                     |                      |                      |
| SPT-37-2.5 |           | 9                     | 8                     | 0                                                | 14                          |                      |                     |                      |                      |
| SPT-38-04  |           | 2                     | 4                     | 9                                                | <10                         | _                    |                     |                      |                      |
| SPT-38-02  | <br> -    | 4                     | 9                     | 9                                                | <10                         |                      |                     |                      |                      |
| SPT-38-03  |           | 8                     | 10                    | 9                                                | <10                         |                      |                     |                      |                      |
| SPT-38-2.5 |           | 9                     | 8                     | 9                                                | <10                         |                      |                     |                      |                      |
| SPT-39-01  |           | 2                     | 4                     | 10                                               | 72                          |                      |                     |                      | į                    |
| SPT-39-02  | <u> </u>  | 4                     | g                     | 10                                               | 7.0                         |                      |                     |                      |                      |
| SPT-39-03  | !         | æ                     | 10                    | 10                                               | 110                         | !                    |                     |                      |                      |
| SPT-39-2.5 |           | ٩                     | 8                     | 10                                               | 93                          | <u> </u>             |                     | İ                    |                      |
| SPT-40-01  |           | 2                     | 4                     | 4                                                | <10                         |                      |                     |                      |                      |
| SPT-40-02  |           | 4                     | 9                     | 4                                                | <10                         |                      |                     |                      |                      |
| SPT-41-01  |           | 2                     | 4                     | 1                                                | <10                         | -                    |                     |                      |                      |
| SPT-41-02  | ļ         | 4                     | 9                     | ļ                                                | 19                          |                      |                     |                      |                      |
| SPT-42-01  |           | 2                     | 4                     | 1                                                | <10                         |                      |                     |                      |                      |
| SPT-42-02  |           | 4                     | 9                     | 1                                                | <10                         |                      |                     |                      |                      |
| SPT-43-01  |           | 2                     | 4                     | 1                                                | <10                         | -                    |                     |                      |                      |
| SPT-43-02  |           | 4                     | 9                     | +                                                | √<br>√10                    |                      |                     |                      |                      |
| SPT 44-01  |           | 2                     | 4                     | 1                                                | <10                         |                      |                     |                      |                      |
| SPT-44-02  |           | 4                     | 9                     | 1                                                | ~ <del>1</del> 0            |                      |                     |                      |                      |
| SPT-45-01  |           | 2                     | 4                     | 9                                                | <10                         |                      |                     |                      |                      |
| SPT-45-02  |           | 4                     | 9                     | 9                                                | <10                         |                      | -                   |                      |                      |
| SPT-46-01  |           | 2                     | ₹                     | 9                                                | <10                         |                      |                     |                      |                      |
| SPT-46-02  | -         | 4                     | 9                     | 9                                                | <10                         |                      |                     |                      |                      |
| SPT-47-01  |           | 2                     | 4                     | 9                                                | 92                          |                      |                     |                      |                      |
| SPT-47-02  | <u> </u>  | 4                     | 9                     | 9                                                | ×10                         |                      |                     |                      |                      |
| CDT 48.04  |           | ٠                     | 7                     | -                                                | ×10                         |                      | _                   | _                    | _                    |

Table 6-1. Pesticide Concentrations in Soils at Chevron Orlando, Florida

| Sample ID Du | Duplicate | Upper Depth<br>(Feet) | Lower Depth<br>(Feet) | Excavation Depth Total -Chlordane (Feet) (mg/Kg) | Total -Chlordane<br>(mg/Kg) | alpha-ВНС<br>(mg/Kg) | beta-BHC<br>(mg/Kg) | gamma-BHC<br>(mg/Kg) | delta-BHC<br>(mg/Kg) |
|--------------|-----------|-----------------------|-----------------------|--------------------------------------------------|-----------------------------|----------------------|---------------------|----------------------|----------------------|
| SPT-48-02    |           | 4                     | 9                     | 1                                                | 0L>                         |                      |                     |                      |                      |
| SPT-49-01    |           | 2                     | 4                     | 9                                                | <10                         |                      |                     |                      |                      |
| SPT-49-02    |           | 4                     | 9                     | 9                                                | <10                         |                      |                     |                      |                      |
| SPT-50-01    |           | 2                     | 4                     | 9                                                | <10                         |                      |                     |                      |                      |
| SPT-50-02    |           | 4                     | හ                     | 9                                                | <10                         |                      |                     |                      |                      |
| SPT-51-01    |           | 2                     | 4                     | 9                                                | <10                         |                      |                     |                      |                      |
| SPT-51-02    |           | 4                     | မ                     | 9                                                | <10                         |                      |                     |                      |                      |
| SPT-52-01    |           | 2                     | 4                     | -                                                | <10                         |                      | •                   |                      |                      |
| SPT-52-02    |           | 4                     | 9                     | ,                                                | <10                         |                      |                     |                      |                      |
| SPT-53-01    |           | 2                     | 4                     | 0                                                | <10                         |                      |                     |                      |                      |
| SPT-53-02    |           | 4                     | 9                     | 0                                                | <10                         |                      |                     |                      |                      |
| SPT-54-01    |           | 2                     | 4                     | 9                                                | <10                         |                      |                     |                      |                      |
| SPT-54-02    |           | 4                     | 9                     | 9                                                | <10                         |                      | i                   |                      |                      |
| SPT-55-04    |           | 2                     | 4                     | 9                                                | <10                         |                      |                     |                      |                      |
| SPT-55-02    |           | 4                     | 9                     | 9                                                | <10                         |                      |                     |                      |                      |
| SPT-56-01    |           | 2                     | 4                     | 9                                                | <10                         |                      |                     |                      |                      |
| SPT-56-02    |           | 4                     | 9                     | 9                                                | <10                         |                      |                     |                      |                      |
| SPT-57-01    |           | _ 2                   | 4                     | Į.                                               | <10                         |                      |                     |                      |                      |
| SPT-57-02    |           | 4                     | 9                     |                                                  | <10                         |                      |                     |                      |                      |
| SPT-58-01    |           | _ 2                   | 4                     | -                                                | ×10                         |                      |                     |                      |                      |
| SPT-58-02    |           | 4                     | 9                     | 1                                                | <10                         |                      |                     |                      |                      |
| SPT-59-01    |           | 2                     | 4                     | 4                                                | <10                         |                      |                     |                      |                      |
| SPT-59-02    |           | 4                     | 9                     | 4                                                | <10                         |                      | į                   |                      |                      |
| SPT-59-03    |           | 8                     | 10                    | 4                                                | <10                         |                      |                     |                      |                      |
| SPT-59-2.5   |           | 9                     | 80                    | 4                                                | <10                         |                      |                     |                      |                      |
| SPT-60-01    |           | 2                     | 4                     | 2                                                | <10                         | ļ                    |                     |                      |                      |
| SPT-60-02    |           | 4                     | 9                     | 2                                                | o.<br>√10                   |                      |                     |                      |                      |
| SPT-60-03    |           | 8                     | 10                    | 2                                                | <10                         |                      |                     |                      |                      |
| SPT-61-01    |           | 2                     | 4                     | 2                                                | <10                         |                      | ,                   |                      |                      |
| SPT-61-02    |           | 4                     | 9                     | 2                                                | <10                         |                      |                     |                      |                      |
| SPT-62-01    |           | 2                     | 4                     | 1                                                | <10                         |                      |                     |                      |                      |
| SPT-62-02    |           | 4                     | 9                     |                                                  | <10                         |                      |                     |                      |                      |
| SPT-A-01     | •         | 1                     | 2                     | 0                                                | 84                          |                      |                     | :                    |                      |
| SPT-B-01     |           | 1                     | 2                     | 0                                                | <10                         |                      |                     |                      |                      |
| SPT-C-01     |           | 1                     | 2                     | 4                                                | 99                          |                      |                     |                      |                      |
| SOT DO       |           | ,                     | 2                     | -                                                | -                           |                      |                     |                      |                      |

Table 6-2. On-site Soil Performance Standards.

|                    |             |                  | On-Site So | ili                  |                             |
|--------------------|-------------|------------------|------------|----------------------|-----------------------------|
|                    |             | ROD              | RAR Soll   | Removal <sup>1</sup> | EPA Region III <sup>2</sup> |
| Contaminant of     | Expos       | ure Pt. Conc.    | Cleanup Ad | tion Levels          | Screen, Val                 |
| Concern            | (Surface)   | (sufc./subsufc.) | (Surface)  | (Subsufce)           | (sufc./subsufc.)            |
| (COC)              | (mg/kg)     | (mg/kg)          | (mg/kg)    | (mg/kg)              | (mg/kg)                     |
| a-BHC              | **          | 1.4              |            |                      | 0.1                         |
| b-BHC              | 1.1         | 1.2              |            |                      | 0.35                        |
| g-BHC (Lindane)    | **          | 1 <u>.4</u>      |            |                      | 0.49                        |
| d-BHC              | **          | **               |            |                      | **                          |
| Chlordane          | <b>8</b> .6 | 46               | 50         | 100                  | 0.49                        |
| 4,4'-DDD           | 2.5         | 17               |            |                      | 2.7                         |
| Benzene            | **          | #±               |            |                      | **                          |
| Toluene            | A+          | 9.k              |            |                      | 1600                        |
| Ethylbenzene       | **          | 9 R              |            |                      | 780                         |
| Xylenes            | **          |                  |            |                      | 16000                       |
| TRPH <sup>†</sup>  | **          | AA               | 5          | 5                    | **                          |
| Arsenic            | - R#        | A#               |            |                      | **                          |
| Chromium           | A*          | **               |            |                      | 39                          |
| Lead               | **          | A#               |            |                      | NL                          |
| Total Napthalenes  | ##          | R N              |            |                      | **                          |
| 4,4'-DDE           | 1,1         | 2.1              |            |                      | 1.9                         |
| 4,4'-DDT           | 1.4         | 2.7              |            |                      | 1.9                         |
| Aldrin             | 1.2         | 1.5              |            |                      | 0.04                        |
| Dieldrin           | 1.2         | 2                | -          |                      | 0.04                        |
| Heptachlor Epoxide | 0.6         | 4t               |            |                      | **                          |
| Endrin             | **          | 6.7              |            |                      | 2.3                         |

<sup>†</sup> TRPH (Total Recoverable Petroleum Hydrocarbons)

<sup>&</sup>lt;sup>1</sup> Removal Action Report (RAR), Brown & Caldwell Consultants, December 1992. Soil Removal Action Levels were determined by EPA and ATSDR. Water Treatment System (WTS) was designed to remove and/or reduce the expected contaminants to the treatment levels required by the epa-osc.

<sup>&</sup>lt;sup>2</sup> EPA Region III Risk based concentrations==> tapwater criteria values (7/11/94)

Table 6-3. Off-site Soil Performance Standards.

|                    |                       | Off-Site Soil            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------|-----------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contaminant of     | ROD<br>Exp. Pt. Conc. | RARA <sup>1</sup><br>PRG | EPA Region III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Concern            | (Surface)             | (Surface)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (COC)              | (surface)<br>(mg/kg)  | (mg/kg)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a-BHC              | (11121.02)            | (118/118)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| b-BHC              | **                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| g-BHC (Lindane)    | **                    | · -                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| d-BHC              | **                    |                          | MS2.471.9.15.150.584.9.8.382.3834.3834.3834.3834.3834.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Chlordane          | 3.9                   | 4.9                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4,4'-DDD           | **                    |                          | 14,140,000,000,000,000,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1,1 000            |                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Benzene            | **                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Toluene            | **                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ethylbenzene       | **                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Xylenes            | **                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TRPH <sup>†</sup>  | **                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Arsenic            | **                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chromium           | **                    | ""                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lead               | 79                    |                          | ANE STATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                    |                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total Napthalenes  | **                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4,4'-DDE           | **                    |                          | HE WAS THE REAL PROPERTY OF THE PARTY OF THE |
| 4,4'-DDT           | **                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Aldrin             | **                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dieldrin           | 0.066                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Heptachlor Epoxide | **                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Endrin             | **                    | · · · · ·                | 10 11 1 12 3 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

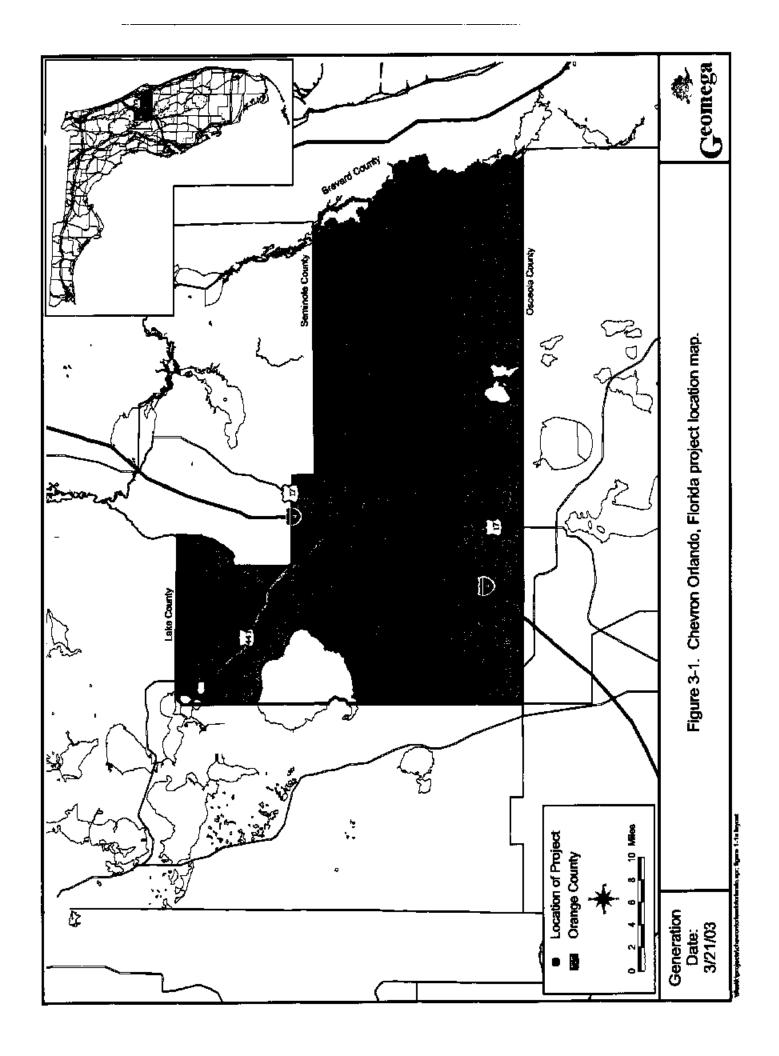
<sup>&</sup>lt;sup>†</sup>TRPH (Total Recoverable Petroleum Hydrocarbons)

<sup>&</sup>lt;sup>1</sup> Removal Action Report Amendment (RARA), Brown & Caldwell Consultants, July 1994. The goal of the additional Removal Action was to excavate and dispose of soils with chlordane concentrations exceeding the Preliminary Remediation Goal (PGR).

<sup>&</sup>lt;sup>2</sup> EPA Region III Risk based concentrations==> tapwater criteria values (7/11/94)

Table 6-4. Natural Attenuation Score Sheet

| Analyte              | Criterion       | Concentration in Most Contaminated Zone | Points Awarded |
|----------------------|-----------------|-----------------------------------------|----------------|
| Dissolved Oxygen     | < 0.5 mg/L      | 0,29 mg/L                               | 3              |
| Nitrate              | < 1 mg/L        | <0.05 mg/L                              | 2              |
| Ferrous Iron         | > 1 mg/L        | 12 mg/L                                 | 3              |
| Sulfate              | < 20 mg/L       | 50 mg/L                                 | 00             |
| Sulfide              | > 1 mg/L        | 0.6 mg/L                                | 0              |
| Methane              | > 0.5 mg/L      | 0.2 mg/L                                | 0              |
| Redox Potential      | < 50 mV         | 19 mV                                   | 11             |
| pH                   | 5 < pH < 9      | 5.56                                    | 0              |
| Total Organic Carbon | > 20 mg/L       | 33 mg/L                                 | 2              |
| Temperature          | > 20 °C         | 21.1 °C                                 | 1              |
| Carbon Dioxide       | > 2X background | 210 mg/L                                | 0              |
| Alkalinity           | > 2X background | 45 mg/L                                 | 1              |
| Chloride             | > 2X background | 70 mg/L                                 | 2              |
| Hydrogen             | > 1 nM          | 2.2 nM                                  | 3              |
| BTEX                 | > 0.1 mg/L      | 36.7 mg/L                               | 2              |
| Daughter Products*   | detected        | yes                                     | 1              |
| Total                |                 |                                         | 21             |


| Score    | <u>Interpretation</u>                  |
|----------|----------------------------------------|
| 0 to 5   | Inadequate evidence for biodegradation |
| 6 to 14  | Limited evidence for biodegradation    |
| 15 to 20 | Adequate evidence for biodegradation   |
| >20      | Strong evidence for biodegradation     |

<sup>\*</sup>Although the 1997 EPA protocol does not score daughter products for the specific COCs at the Marzone site, one point was awarded for daughter products being detected at the site.

Table 9-1. Sampling and Analytical Plan Summary for the Chevron Orlando Site (2<sup>nd</sup> Five-Year Review Period)

|         |        | Spring        | Spring Sampling Event | 19 Event   |             |        | Fall 5        | Fall Sampling Event | Event      |             |
|---------|--------|---------------|-----------------------|------------|-------------|--------|---------------|---------------------|------------|-------------|
|         |        |               |                       |            |             |        |               |                     |            |             |
|         |        |               |                       | Volitile   | •           |        |               |                     | Volitile   |             |
|         |        | Conductivity. | HACH                  | Organic    | Chlorinated |        | Conductivity, | HACH                | Organic    | Chlorinated |
|         | Water  | Temperature,  | Ferrous               | Chemicals* | Pesticides  | Water  | Temperature,  | Ferrous             | Chemicals* | Pesticides  |
| Well ID | Level  | PH, Eh, DO    | 딘                     | (EPA 8021) | (EPA 8081)  | Level  | pH, Eh, DO    | 6                   | (EPA 8021) | (EPA 8081)  |
| MW-1S   | anuna  | annual        | annual                |            | annual      | anuna  | anuna         | anuna               |            | anma        |
| MW-1D   | anuna  | annual        | annna                 | annna      | anmal       | annuai | anuna         | annual              | annual     | annual      |
| MW-2S   | anuna  | annual        | 2,4                   |            | 2,4         | annea  | enune         | 2,4                 |            | 2,4         |
| MW-2D   | anuna  | annual        | 2,4                   |            | 2,4         | annnal | anuna         | 2,4                 |            | 2,4         |
| MW-35   | annual | anmal         | 2,4                   |            | 2,4         | annna  | annuai        | 2,4                 |            | 2,4         |
| MW-3D   | annual | annna         | 2,4                   |            | 2,4         | anunal | annual        | 2,4                 |            | 2,4         |
| MW-4S   | anuna  | annual        | 2,4                   |            | 2,4         | annua  | anuna         | 2,4                 |            | 2,4         |
| MW-4D   | anural | annual        | 2,4                   |            | 2,4         | anuna  | annual        | 2,4                 |            | 2,4         |
| MW-55   | anuna  | annual        | 2,4                   |            | 2,4         | arınıa | annnal        | 2,4                 |            | 2,4         |
| MW-5D   | anuna  | anunal        | 2,4                   |            | 2,4         | annual | annual        | 2,4                 |            | 2,4         |
| MW-6S   | anuma  |               |                       |            |             | anuna  |               |                     |            |             |
| MW-6D   | anuna  |               |                       |            |             | annna  |               |                     |            |             |
| MW-7S   | anuna  |               |                       |            |             | anunal |               |                     |            |             |
| MW-7D   | anuma  |               |                       |            | -           | annual |               |                     |            |             |
| MW-8S   | annua  | annual        | 2,4                   |            | 2,4         | anuna  | annnai        | 2,4                 |            | 2,4         |
| MW-8D   | anuna  | anunal        | 2,4                   |            | 2,4         | annual | anunal        | 2,4                 |            | 2,4         |
| De-WM   | annual | anunal        | 2,4                   |            | 2,4         | annua  | anuna         | 2,4                 |            | 2,4         |
| MW-10S  | anuna  | anunat        | 2,4                   |            | 2,4         | anua   | anannal       | 2,4                 |            | 2,4         |
| MW-10D  | anua   | anunal        | 2,4                   |            | 2,4         | annua  | annual        | 2,4                 |            | 2,4         |
| MW-11   | annna  | annual        | 2,4                   |            | 2,4         | annual | annual        | 2,4                 |            | 2,4         |
| MW-12   | annna  | annual        | 2,4                   |            | 2,4         | anuna  | annnai        | 2,4                 |            | 2,4         |
| MW-15   | annual | anunal        | 2,4                   |            | 2,4         | anuna  | annual        | 2,4                 |            | 2,4         |
| MW-165  | anuna  | anuna         | 2,4                   |            | 2,4         | anuna  | anunal        | 2,4                 |            | 2,4         |
| MW-16D  | aniual | anmai         | 2,4                   |            | 2,4         | anuna  | annual        | 2,4                 |            | 2,4         |
| MW-17   | anuna  | annual        | 2,4                   |            | 2,4         | annual | annnal        | 2,4                 |            | 2,4         |
| MW-A    | annual |               |                       |            |             | anuna  |               |                     |            |             |
| MW-D    | annual | į             |                       |            |             | anuna  |               |                     |            |             |

Blank = not analyzed annual = annual sampling 2,4 = sampling in the second year (2004) and fourth year (2006) \*\*VOCs - only purgeable aromatics (e.g. benzene), not purgeable halocarbons



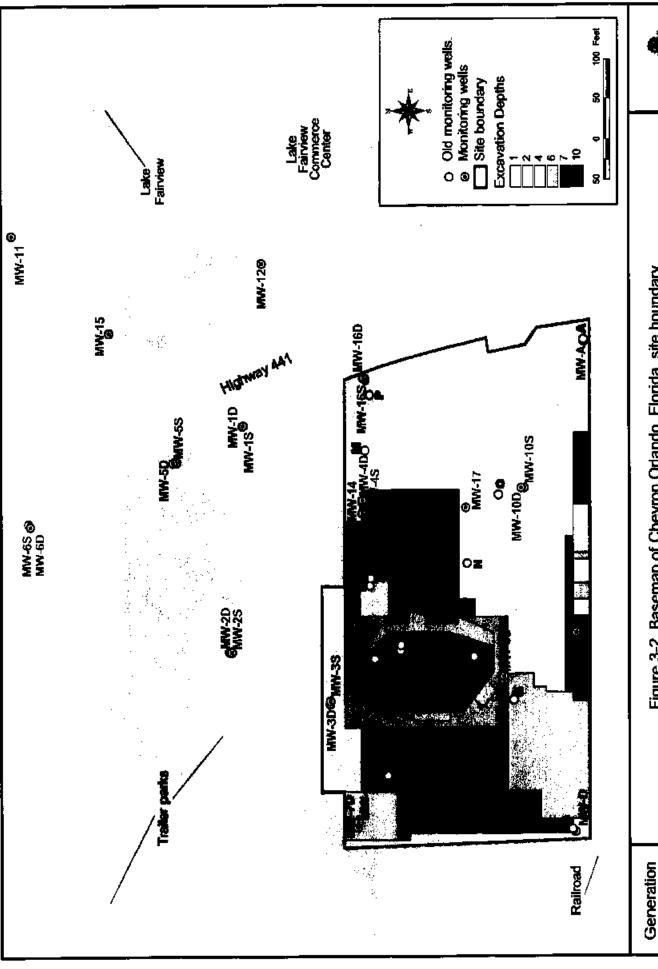
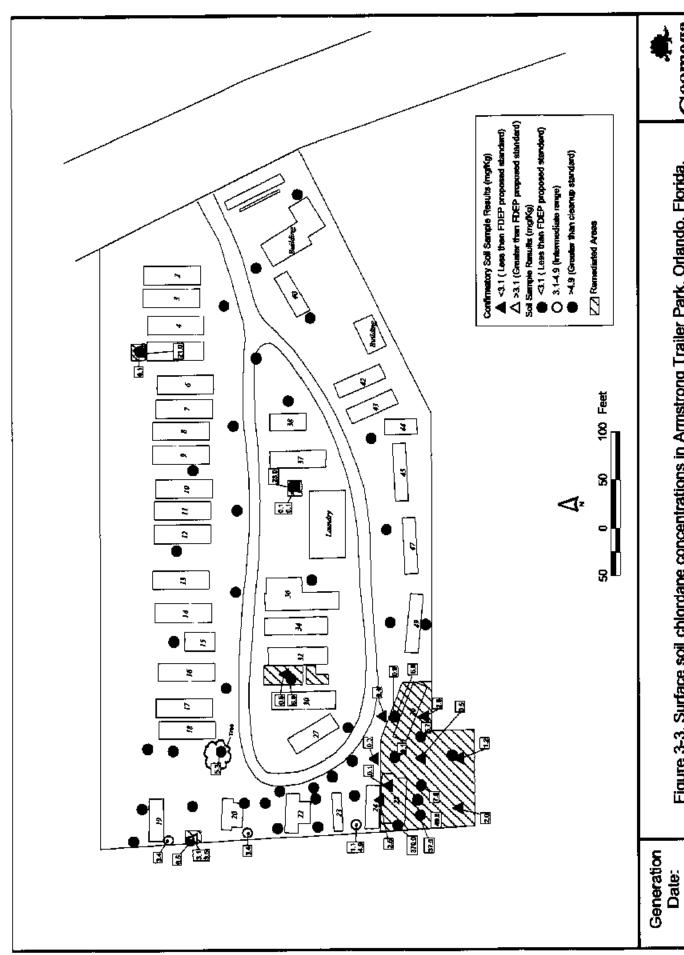
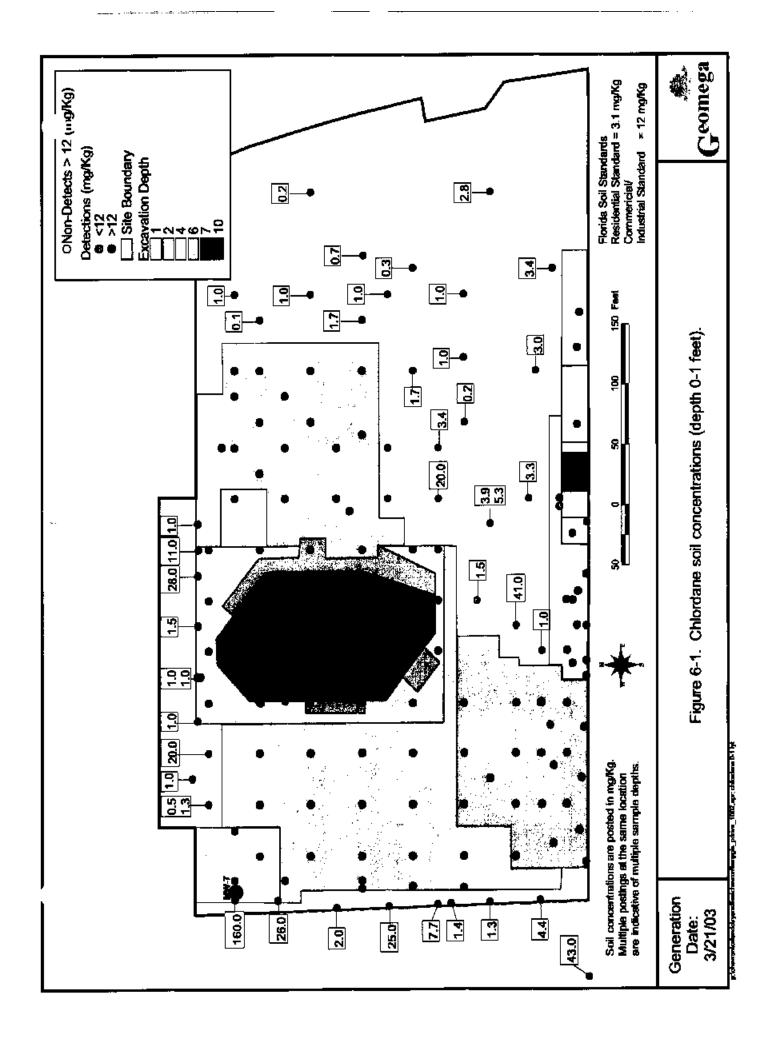
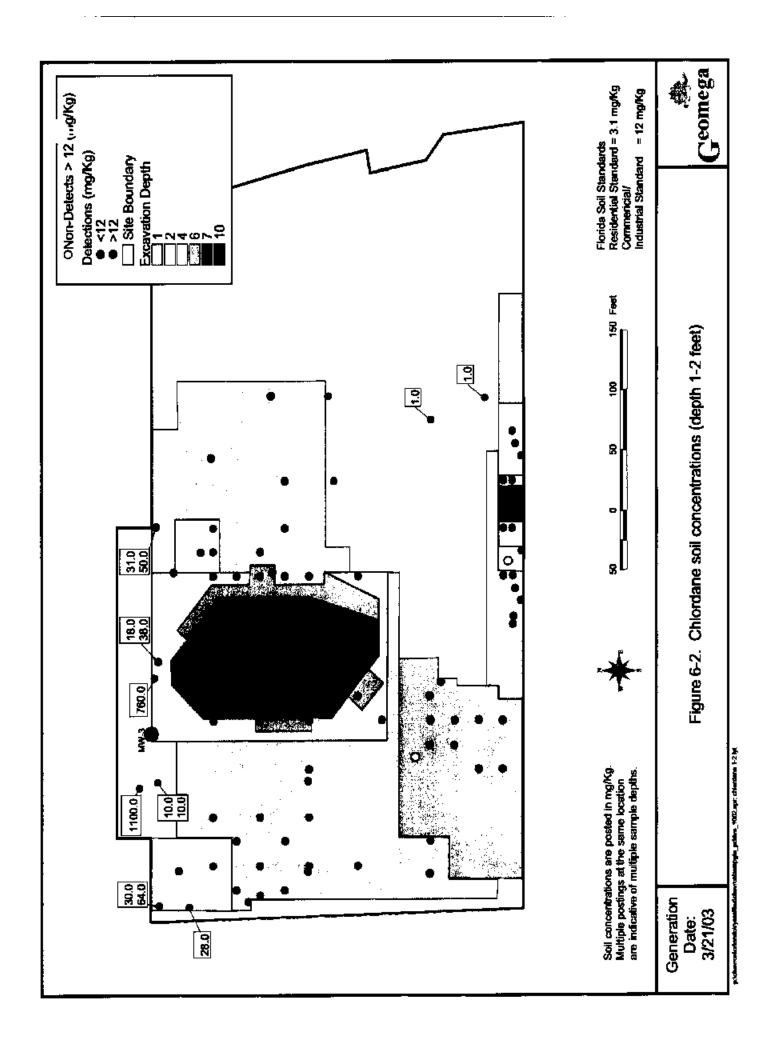
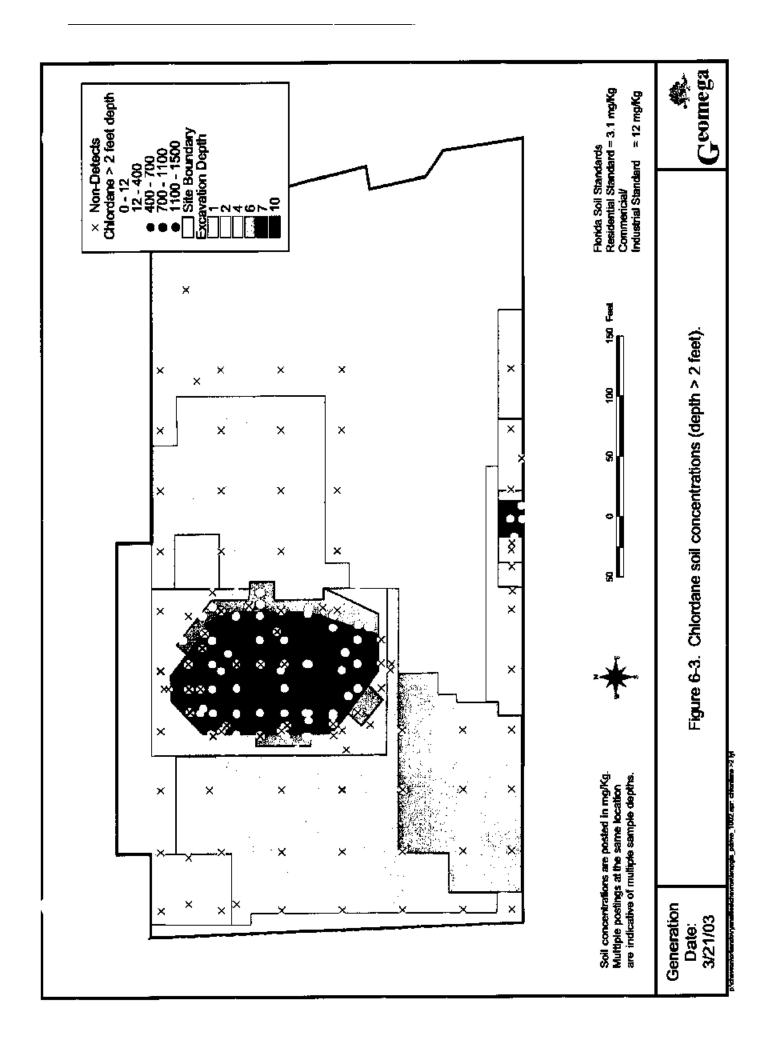



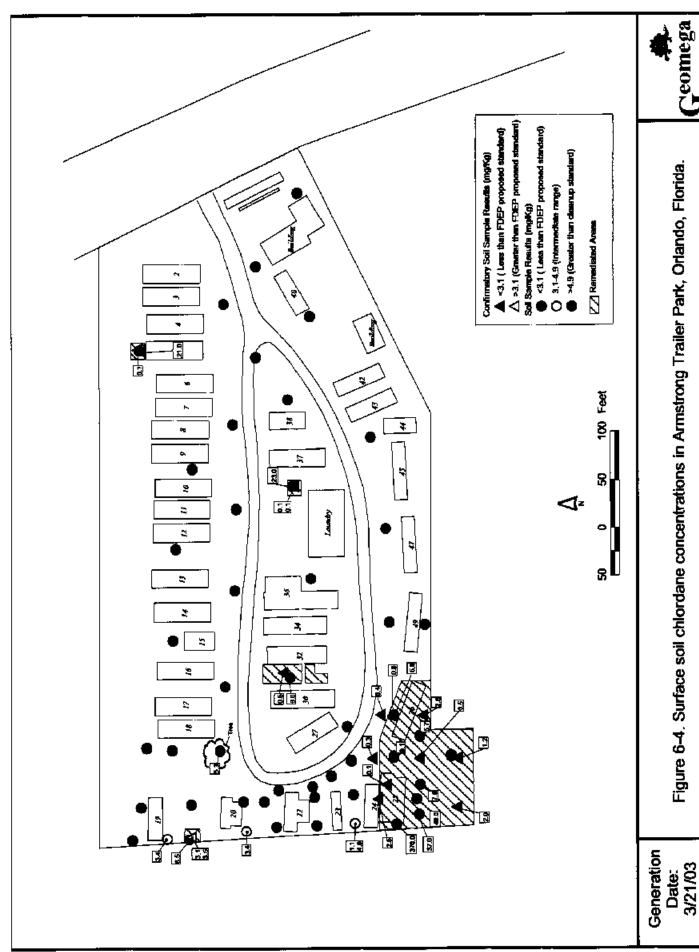

Figure 3-2. Basemap of Chevron Orlando, Florida, site boundary, approximate excavation surface, and monitoring well locations.

Ceomega


3/21/03 Date:



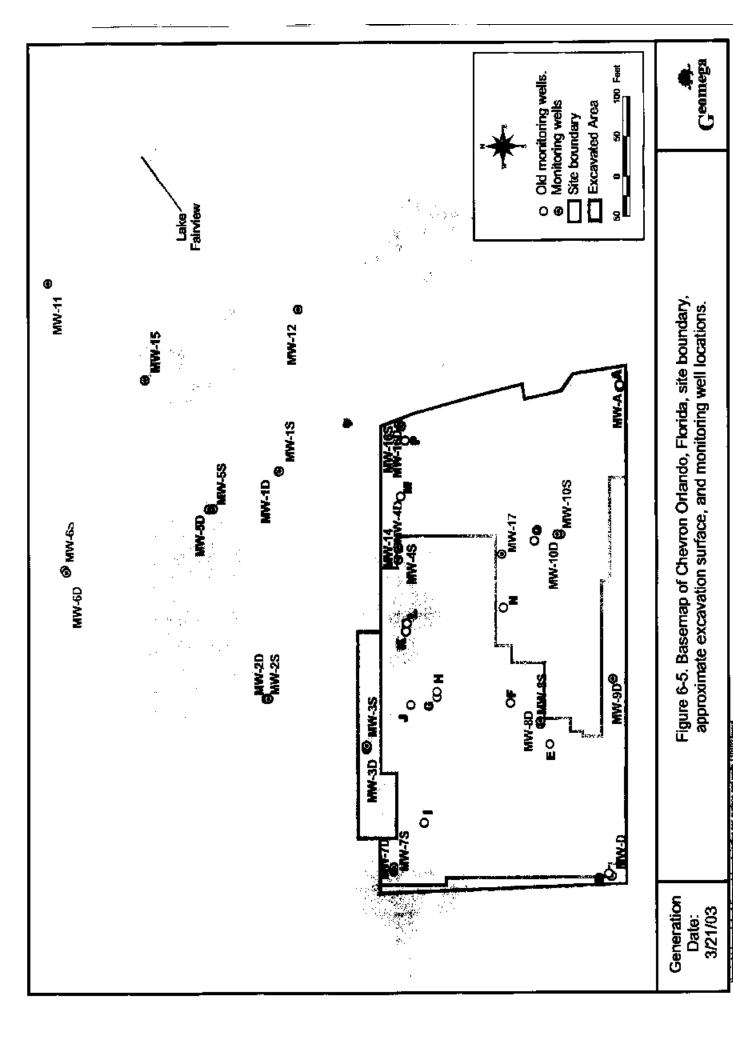


Ceomega

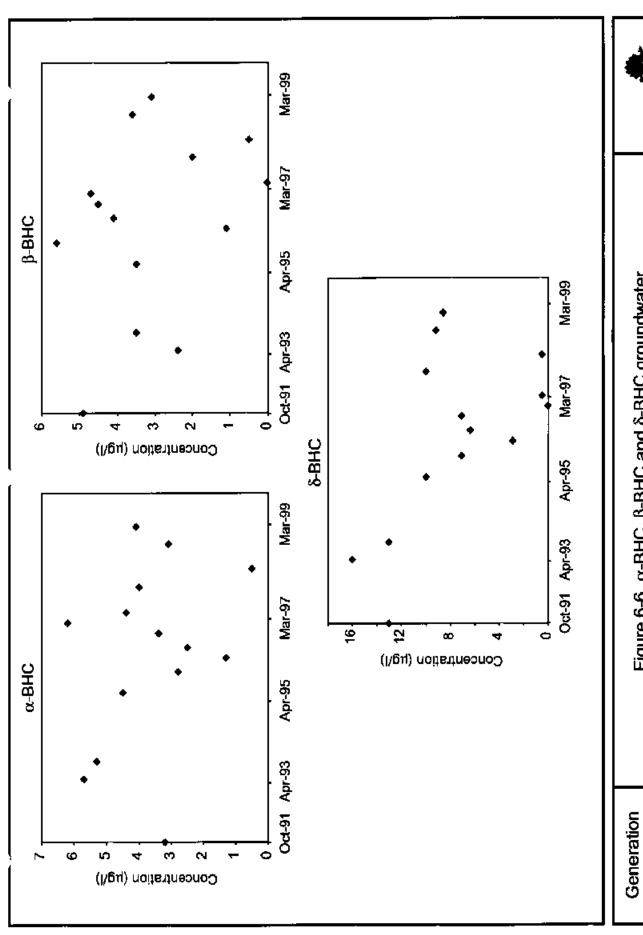

Figure 3-3. Surface soil chlordane concentrations in Armstrong Trailer Park, Orlando, Florida.

3/21/03








Geomega

Figure 6-4. Surface soil chlordane concentrations in Armstrong Trailer Park, Orlando, Florida.

ndo\_britanpark.apr Figura 1





Geomega

Figure 6-6.  $\alpha$ -BHC,  $\beta$ -BHC and  $\delta$ -BHC groundwater concentrations for MW-4D at the Chevron Orlando, Florida site.

to Constitution and Total State of Constitution

Date: 3/21/03

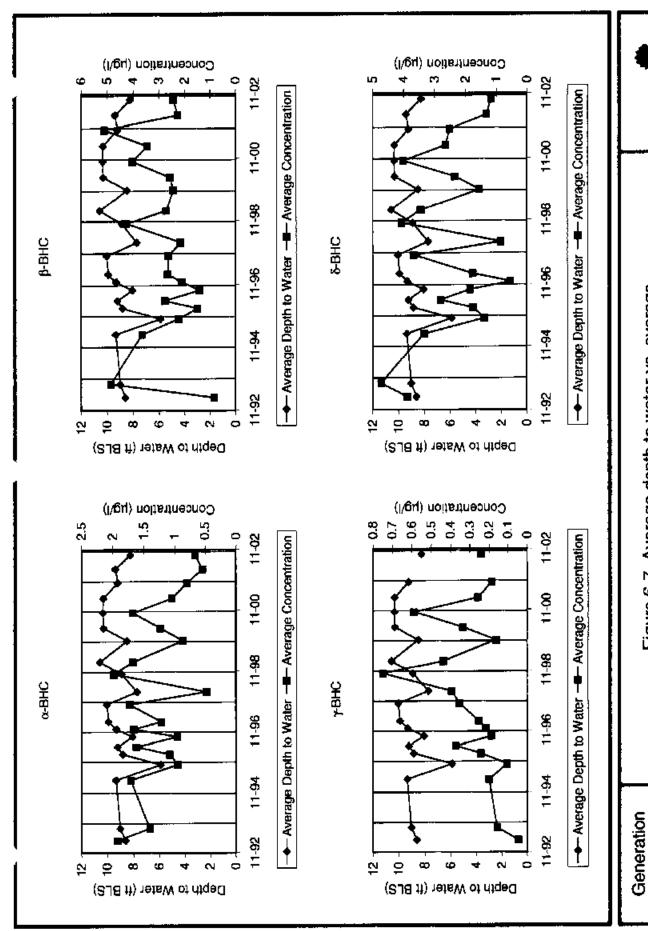





Figure 6-7. Average depth to water vs. average concentration at Chevron Orlando, Florida.

seconOstando/Flue-Year RedeenAverage ats

Date: 12/27/02

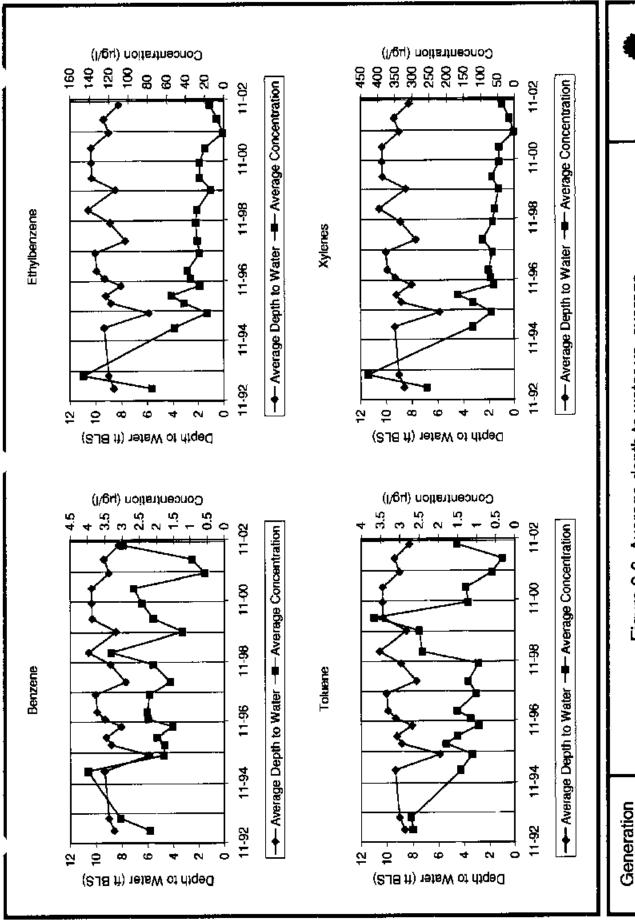
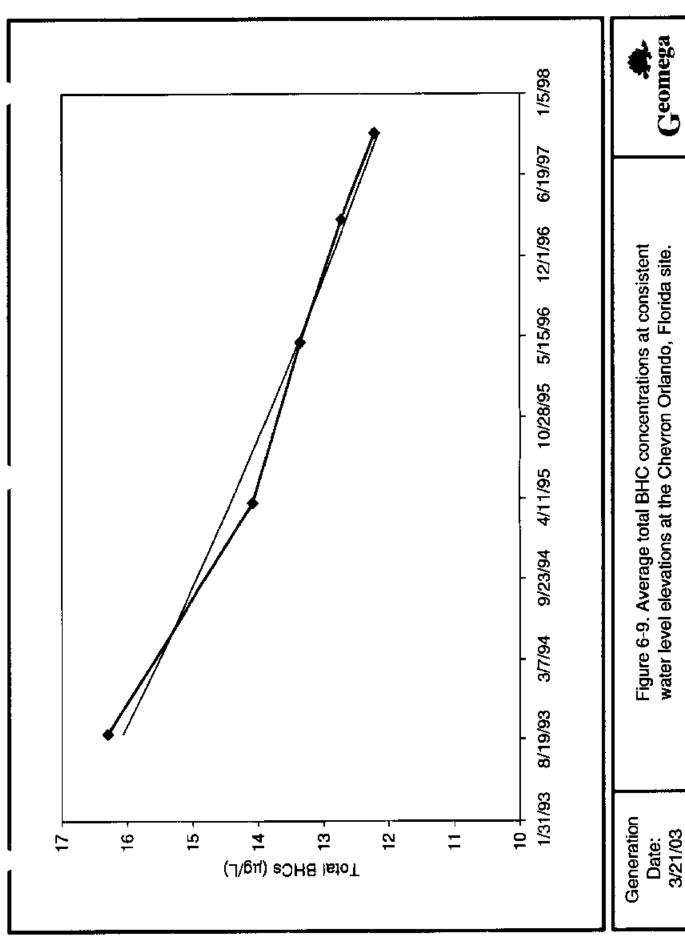
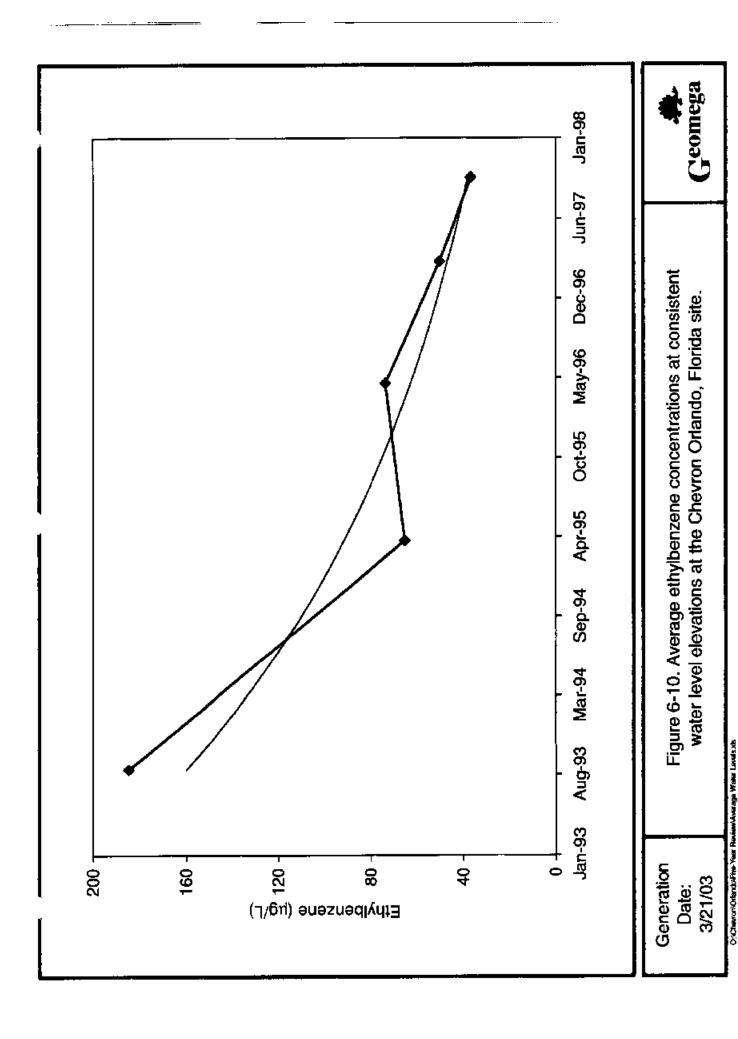
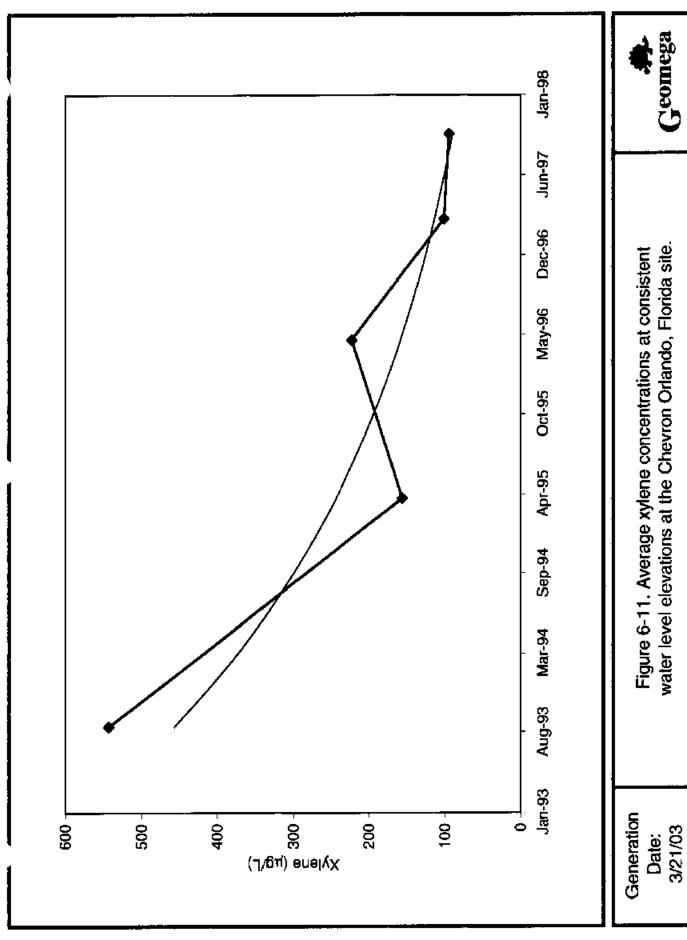





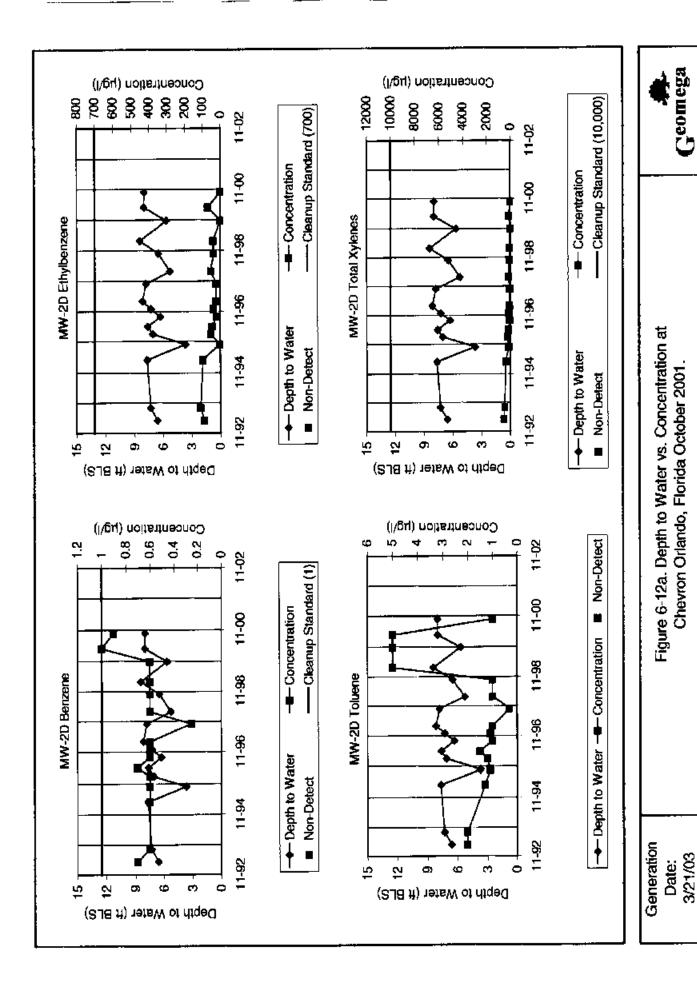

Figure 6-8. Average depth to water vs. average concentration at Chevron Orlando, Florida.


Date: 12/27/02




Geomega

Figure 6-9. Average total BHC concentrations at consistent water level elevations at the Chevron Orlando, Florida site.


On Chwydrio Mar Harin Water Lavels de





Geomega

water level elevations at the Chevron Orlando, Florida site. Figure 6-11. Average xylene concentrations at consistent



O. Chevron Crientick Five Year Heveun French and

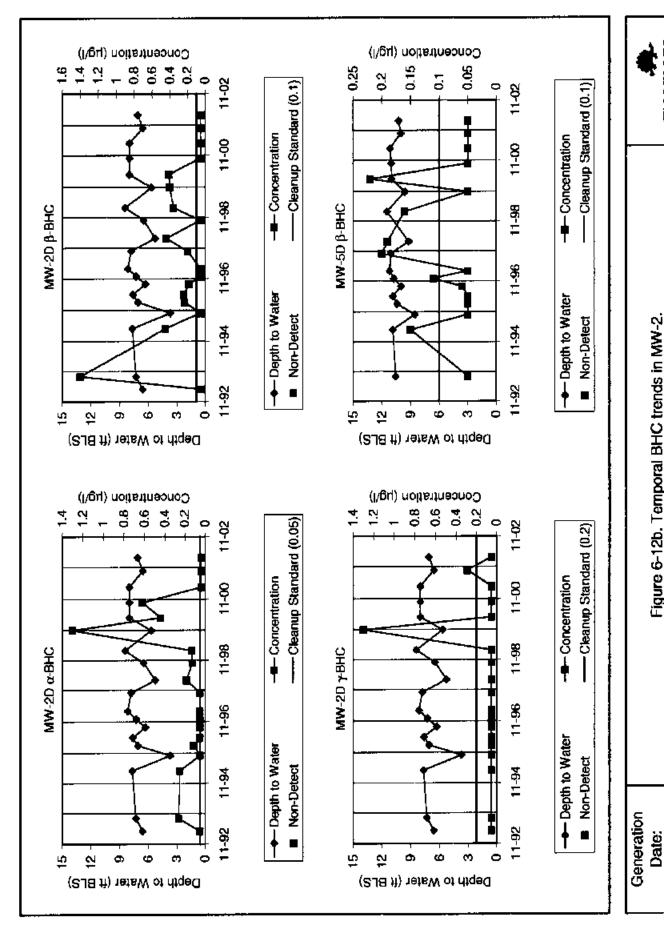



Figure 6-12b. Temporal BHC trends in MW-2.

Geomega

3/21/03

O. Charton Ortendol-No Year Horselv | emporel Trends-230

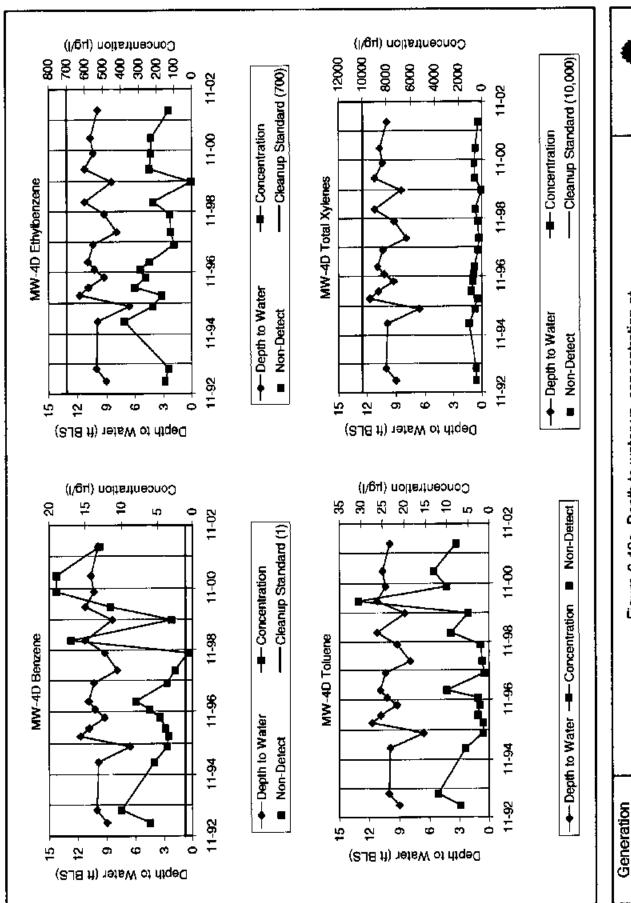



Figure 6-13a. Depth to water vs. concentration at Chevron Orlando, Florida October 2001,

\*Chemon/Orlando/Five-Year Havian/Figure B-1\_Finst-XI

3/24/03

Date:

Ceomega



Figure 6-13b. Depth to water vs. concentration at Chevron Orlando, Florida October 2001.

Ceomega

Date: 3/21/03

Voer Designal France H 1 Free

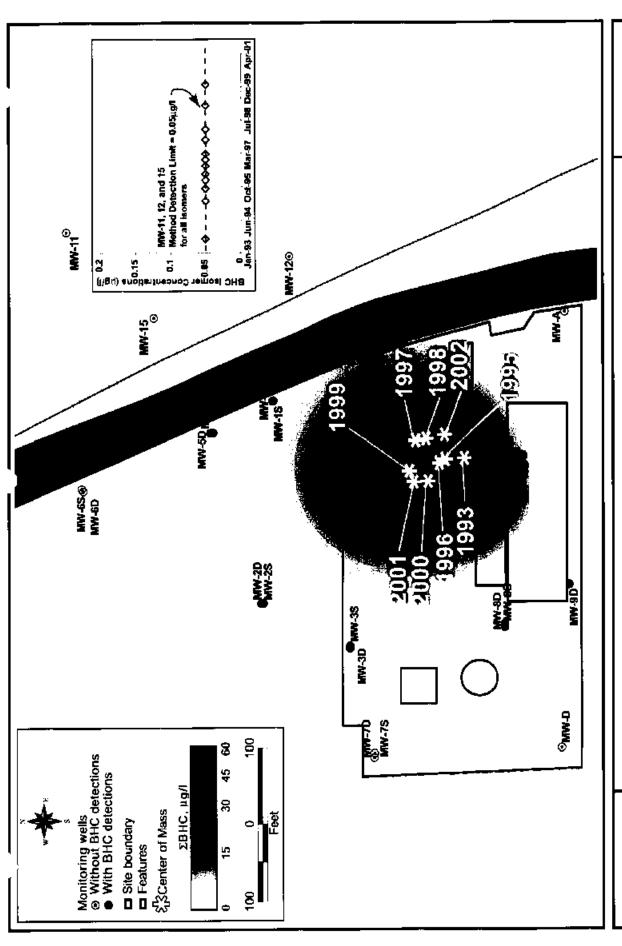



Figure 6-14. Spatial distribution of total BHCs in groundwater, Chevron Orlando.

Ceomega

otal BHCs indo.

Date: 3/21/03

Generation

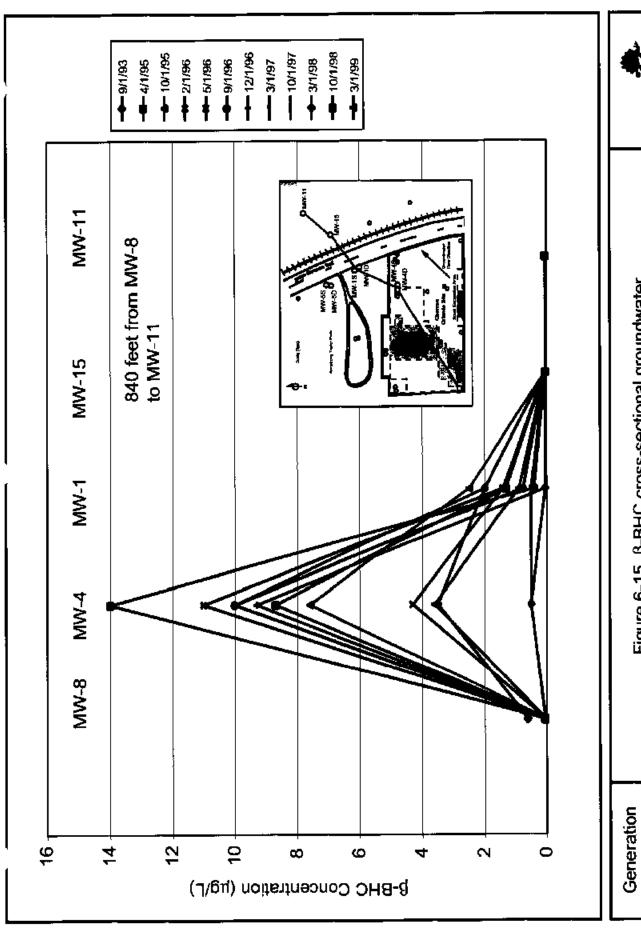
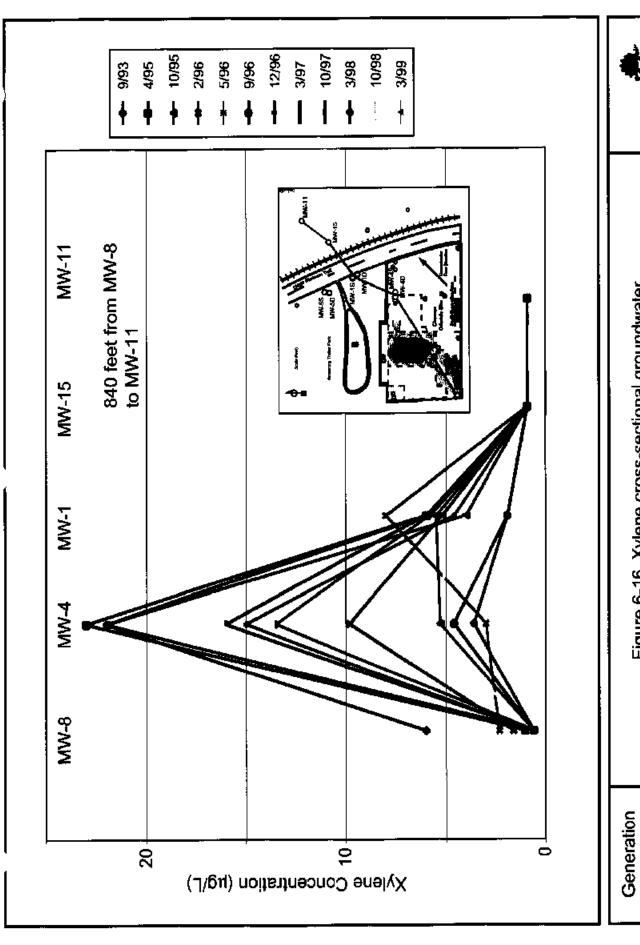
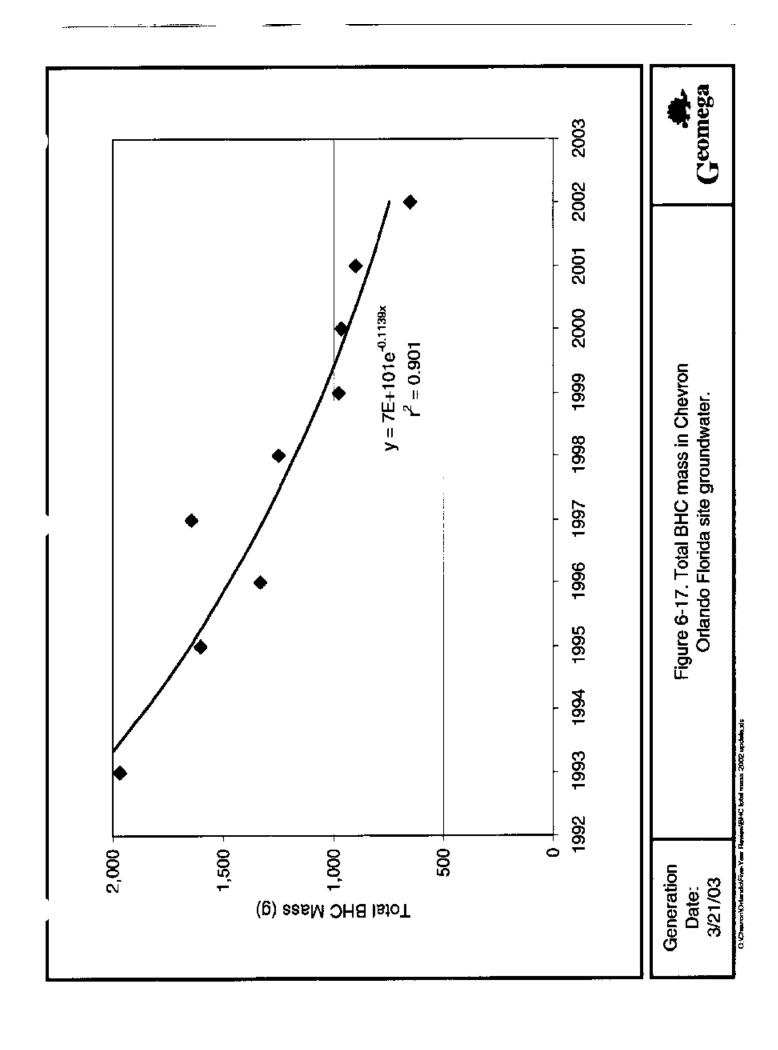
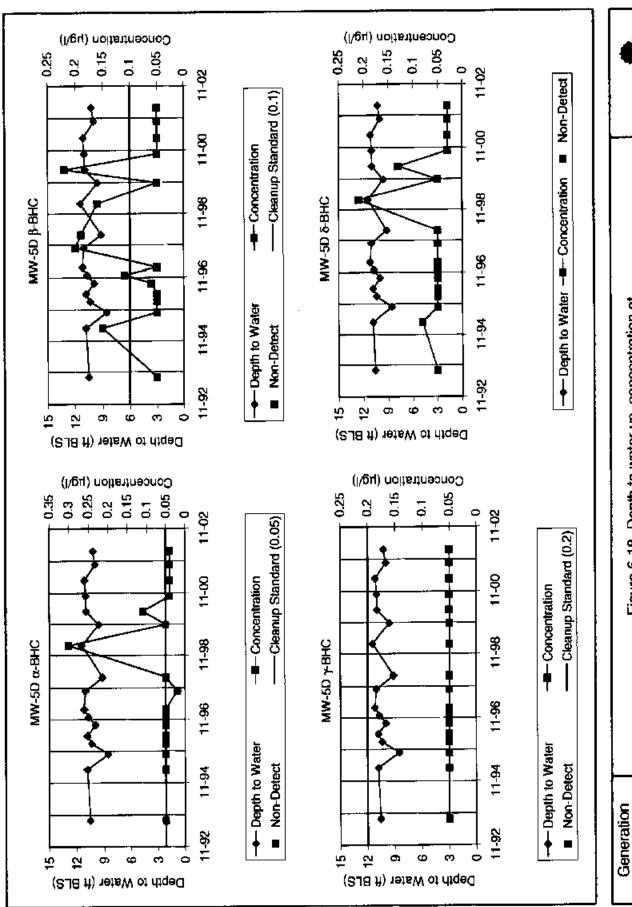






Figure 6-15. β-BHC cross-sectional groundwater concentrations at the Chevron Orlando, Florida site.

o;Chevron/Ortando/Five-Year Revierr/usedionbetabloc.si


Date: 3/21/013

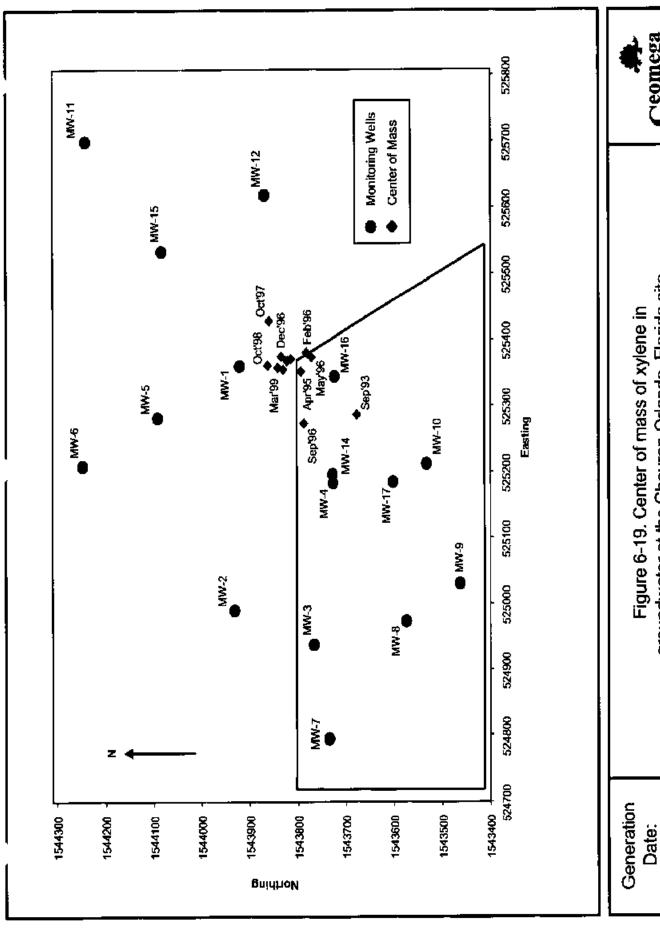



Geomega

Figure 6-16. Xylene cross-sectional groundwater concentrations at the Chevron Orlando, Florida site.

Date:
3/21/03



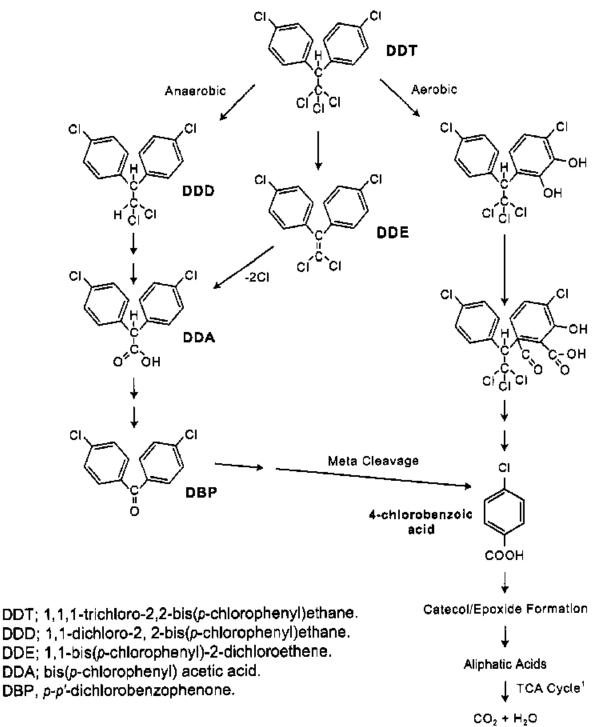



Сеошева

Figure 6-18. Depth to water vs. concentration at Chevron Orlando, Florida October 2001.

O:CharanOrbadolFve Year RevewFigue B-1

Date: 3/21/03





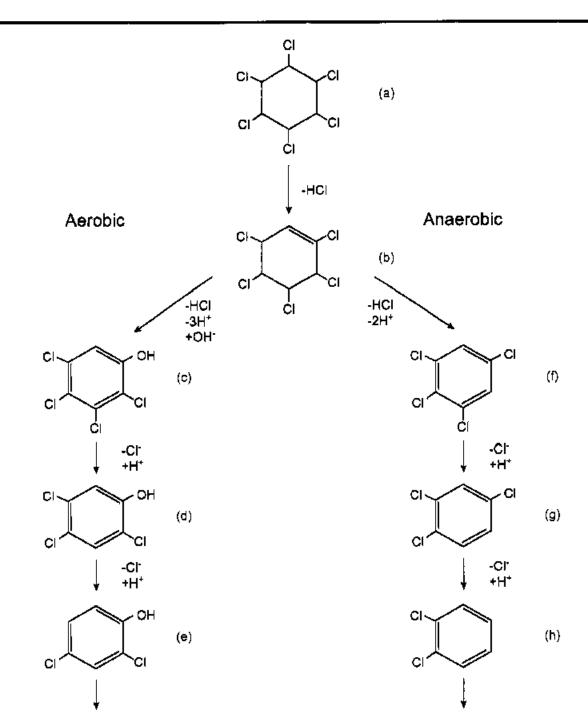

groundwater at the Chevron Orlando, Florida site. Figure 6-19. Center of mass of xylene in

o: Chevron Chlandol Five-Year Review toarter of mass soy for e.a.i

3/21/03



TCA is the tricarboxylic acid cycle.


 Daughter products to blue have been analyzed as part of the monitored natural attenuation program.

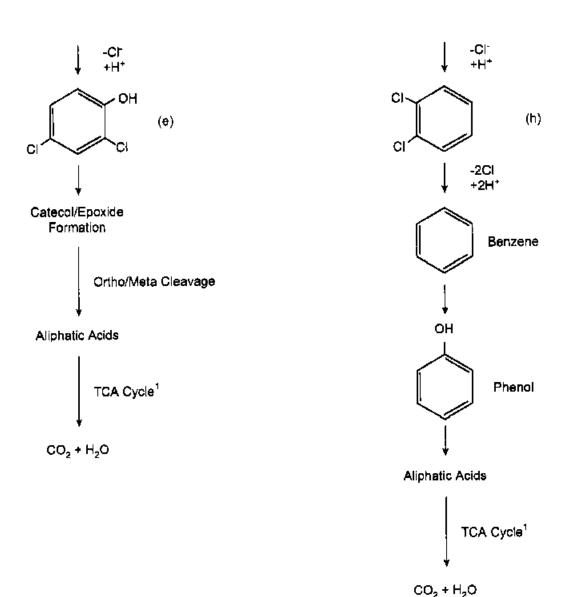
After Aislabie & Lloyd-Jones 1995.

Generation Date: 3/21/03

Figure 6-20. Bacterial degradation pathways for DDT.






(a) BHC; (b) Pentachlorocyclohexene; (c) Tetrachlorophenol; (d) Trichlorophenol;(e) Dichlorophenol; (f) Tetrachlorobenzene; (g) Trichlorobenzene; and (h) Dichlorobenzene.

Daughter products in blue have been analyzed as part of the monitored natural attenuation program.

Generation Date: 3/21/03

Figure 6-21a. Generalized BHC degradation pathways.





(a) BHC; (b) Pentachlorocyclohexene; (c) Tetrachlorophenol; (d) Trichlorophenol; (e) Dichlorophenol; (f) Tetrachlorobenzene; (g) Trichlorobenzene; and (h) Dichlorobenzene.

Generation Date: 3/21/03

Figure 6-21b. Generalized BHC degradation pathways.



<sup>&</sup>lt;sup>1</sup> TCA is the tricarboxyllo acid cycle.

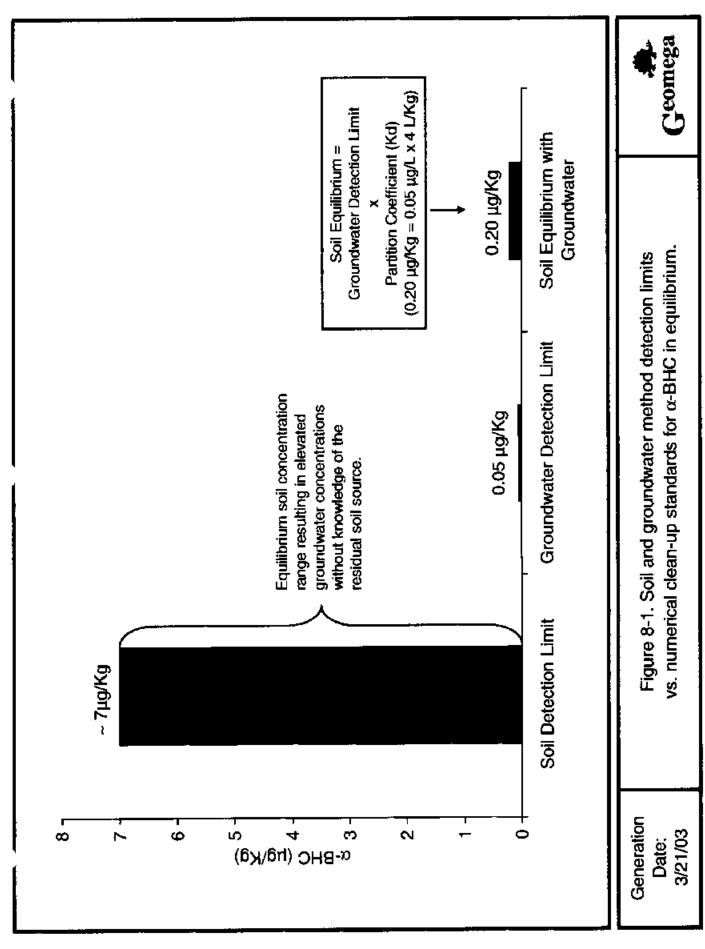

<sup>\*</sup> Daughter products in blue have been analyzed as part of the monitored natural attenuation program.



Figure 6-22. Generalized xylene degradation pathways.

Date: 3/21/03

Generation



O:\Chemon\Orkacto\Five Year Revise\Equilibrium.xb

Appendix A Fall 2002 Groundwater Sampling Report, Chevron, Orlando, Florida Site.

### A.1 Introduction

This appendix reports on the data collection activities that were conducted on the Chevron Orlando, Florida site between September 4-8, 2002. The data collection was conducted by personnel from TASK Environmental, Inc. (Tampa, FL). The objective of the data collection was to fulfill the semi-annual monitoring requirements as set forth in the site's Record of Decision (ROD).

#### A.2 Site Maintenance Activities

TASK Environmental, Inc. (TASK) performs site maintenance activities on a monthly or bi-monthly basis, depending on rainfall (monthly during wet season, bi-monthly during dry season). Site maintenance activities include mowing the grass, removing weeds and vegetation along the fence-line, trimming trees, repair of the chain-link fence, replacement of warning signs, collection and disposal of garbage and debris, and painting the block wall and monitor well covers.

## A.3 Water Quality Data

The data collected from site wells (Figure A-3-1) during the Fall 2002 sampling included:

- water level measurements.
- field geochemical data (pH, ORP, specific conductivity, dissolved oxygen, temperature, color, clarity, and ferrous iron), and
- laboratory analyses (chlorinated pesticides via EPA Method 8081 and volatile organic compounds via EPA Method 8021).

#### A.3.1 Water Level Measurements

Water level measurements are important at the Orlando, Florida site because water table fluctuations influence analytical chemistry (Section A.4.1 and Appendix C). These data were collected on September 4-8, 2002 for 16 on-site and 11 off-site wells (Table A-3-1), using an electronic water level indicator. Measurements were taken as part of the standard semi-annual well sampling and for use in the evaluation of water level elevation vs. concentration comparison (Section A.4.1).

Consistent with the historic pattern, Fall 2002 groundwater elevations in individual monitoring wells were generally higher than levels measured during Spring 2002 sampling event. The September 2002 water elevations on average increased 1.16 feet above the March 2002 levels. The maximum increase was 2.68 feet at MW-10D, and the only decrease was 0.08 feet at MW-3D.

### A.3.2 Field Parameters

Field parameters were measured using a flow-through cell while purging three to five well volumes from the wells, prior to sampling. Purging ceased either after three well volumes or when geochemical readings (e.g., conductivity, ORP, pH, temperature, and dissolved oxygen) had stabilized (Table A-3-2).

With the exception of MW-2S, MW-4S and MW-5S, on- and off-site groundwater has a relatively low specific conductivity (≤380 µS/cm) (microSiemens/centimeter). The conductivity for MW-4S and MW-5S has fluctuated from 120 to 1100  $\mu S/cm$  and 320 to 900  $\mu$ S/cm, respectively since 1993. The Spring and Fall 2002 conductivities were consistent with 700 µS/cm in MW-48 and 650 µS/cm in MW-5S. Specific conductivity at MW-2S decreased from 806 µS/cm to 160 µS/cm which is consistent with the seasonal fluctuations observed in this well. ORP measurements ranged from -290.2 mV to 266.6 mV, and dissolved oxygen ranged from 0.04 mg/l to 2.29 mg/l. Dissolved oxygen was lower in deep wells (average 0.33 mg/l) than in shallow wells (average 1.08 mg/l). Onand off-site groundwater is moderately acidic (pH between 3.92 and 6.32) with the lowest pH wells off-site. In September 2002, these pH's generally increased compared to the historic low values measured in April 2001 and the most recent sampling in Spring 2002.

# A.3.3 HACH Spectrophotometer Analyses

Following purging, groundwater was passed through a  $0.45~\mu m$  filter and analyzed for ferrous iron in the field using a HACH DR2000 spectrophotometer. This measurement was used to determine the redox state of each well (Table A-3-3). The reduced form of iron was found in all monitoring wells, ranging from 0.02 to 3.03 mg/l. The reduced

elemental form indicates that site geochemical conditions are generally reducing and, therefore, favorable to reductive dechlorination of the COCs.

## A.3.4 Standard Semi-Annual Analyses

Groundwater samples were collected with dedicated disposable Teflon bailers from 19 wells as part of the semi-annual sampling event. Each well was purged prior to sample collection with a peristaltic pump. Three to five well volumes of water were removed from each well prior to sampling. Purge water was collected and treated on-site.

### A.3.4.1 Analytical Results

An optimized sampling plan was presented in March of 2001 (Proposed Changes to the Sampling & Analytical Plan for the Chevron Orlando, Florida Site, Geomega, March 2001). Groundwater samples were analyzed for the optimized semi-annual parameters (chlorinated pesticides by EPA Method 8081 and volatile organic compounds via EPA Method 8021) by SunLabs (Table A-3-4 and Appendix D). These analytic data were combined with historical groundwater data to update the site interpretation (Section 4).

In general, numerical results for site COCs ( $\alpha$ -,  $\beta$ -,  $\gamma$ -,  $\delta$ -BHC, and BTEX compounds) conformed to the historic pattern where higher groundwater elevations result in lower COC concentrations.

### A.3.4.2 Duplicate Analyses

Duplicate samples were taken in September 2002 from wells MW-1D, MW-3S, and MW-4S and analyzed at SunLabs to determine lab precision. All duplicate analytical results were within 26% of each other (Table A-3-4 and Appendix D).

# A.4. Data Analysis

# A.4.1 Water Level Elevation vs. Concentration

An analysis of water level elevation versus COC concentration in the Comprehensive Data Review & Hydrogeochemical Conceptualization of the Chevron Orlando Site (Geomega, 1999) showed that short-term temporal variability in COC concentrations was

associated with changes in water level elevation. A correlation was established between average total BHC concentrations and depth to water, suggesting that the rise and fall observed in site water levels controls groundwater BHC concentrations.

The correlation with depth to water is less significant for BTEX compounds because these compounds do not sorb strongly to soils. Therefore, BTEX groundwater concentrations are not as dependent on sorption/desorption mechanisms as the BHC isomers. Previously, it has been recognized that COC concentrations must be examined in conjunction with water level elevations to accurately interpret temporal evolution in COC concentrations. This theory was confirmed again by the results of the Fall 2002 sampling, because while the water level increased from the previous sampling event, the COC concentrations in general decreased over the same time period (see Figure A-4-1 for average concentrations). Appendix C contains figures of water level versus COC concentration for each individual well.

# A.4.2 Groundwater COC Observations

Since Fall 2001 no BHCs have been detected in MW-15 which leads to the conclusion that anomalous Spring 2001 low level detections of  $\alpha$ - BHC in MW-15 were within the range of analytical uncertainty. The Fall 2002 non-detect results reinforce the evidence of analytical interferences for BHC analyses and substantiate the analytical difficulties associated with low BHC concentrations at this location.

Benzene, ethylbenzene and xylene concentrations increased in monitor wells MW-1D and MW-3S. However, these increased hydrocarbon concentrations did not exceed cleanup standards for ethylbenzene or xylene.

# A.4.3 Non-Detect Summary

An analysis was performed of samples collected in 2002. COC analyses were evaluated from all wells sampled in 2001 and 2002 to determine the frequency at which COCs are detected (Table A-4-1). Four wells (MW-2S, MW-5S, MW-5D, and MW-8D) have nondetect BHC and BTEX results at detection limits below the cleanup standards for at least

the last four consecutive sampling events (i.e., April 2001, October 2001, March 2002, and September 2002). Based on these results, groundwater monitoring at these locations can be discontinued.

#### A.5 Conclusions

The results of the Fall 2002 semi-annual sampling and analysis confirm the interpretations presented in October 1999 (Geomega 1999), including:

- water level fluctuations correlate strongly with groundwater pesticide concentrations;
- the BHC isomer groundwater plume remains stable with the mass of  $\Sigma BHC$  in groundwater decreasing at approximately 10% per annum since 1993 (Geomega 2000c); and
- sampling should be discontinued at MW-2S, MW-5S, MW-5D, and MW-8D based on analytical evidence that COCs are not present at these locations (Appendix B; Geomega 1999, 2000a, 2000b, 2001a, 2001b, 2002).

#### A.6 References

- EPA, Test Methods for Evaluating Solid Waste (SW-846) Method 8081A, Revision 1, December, 1996
- F.A.C. Rules 62-4.246 Sampling, Testing Methods, and Method Detection Limits for Water Pollution Sources.
- Geomega, 1999. Comprehensive Data Review & Hydrogeochemical Conceptualization of the Chevron Orlando Site. Prepared for Chevron Chemical Company, September 16, 1999.
- Geomega, 2000a. Fall 1999 Groundwater Sampling Report, Chevron Orlando, Florida Site. March 2000.
- Geomega, 2000b. Spring 2000 Groundwater Sampling Report, Chevron Orlando, Florída Site. September 20, 2000.
- Geomega, 2000c. BHC in Chevron Orlando Groundwater: Evidence for Plume Attenuation and Stability. December 13, 2000.

- Geomega, 2001a. Fall 2000 Groundwater Sampling Report, Chevron Orlando, Florida Site. February 9, 2001.
- Geomega, 2001b. Spring 2001 Groundwater Sampling Report, Chevron Orlando, Florida Site. July 2, 2001.
- Geornega, 2002. Fall 2001 Groundwater Sampling Report, Chevron Orlando, Florida Site. January 22, 2002.



Table A-3-1. Water level elevations for Chevron Orlando, Florida September 2002

| 141-11        | Manakas          | Laural            | Date   | Depth to Water<br>(ft BLS) | Top of Casing<br>Elevation (ft MSL) | Water Elevation<br>(ft MSL) |
|---------------|------------------|-------------------|--------|----------------------------|-------------------------------------|-----------------------------|
| Welf<br>MW-1S | Number           | <u>Level</u><br>S | 9/5/02 | 9.55                       | 100.93                              | 91.38                       |
| MW-15         | 1                | D                 | 9/5/02 | 9.55                       | 100.89                              | 91.34                       |
| MW-2S         | 2                | S                 | 9/5/02 | 5.61                       | 99.11                               | 93.5                        |
|               | 2                | Ď                 | 9/5/02 | 5.70                       | 99.16                               | 93.46                       |
| MW-2D         | 2                | Ş                 | 9/5/02 | 6.99                       | 101.82                              | 94.83                       |
| MW-3S         | 2<br>2<br>3<br>3 | Ď                 | 9/6/02 | 7.22                       | 101.65                              | 94.43                       |
| MW-3D         |                  |                   |        | 9.12                       | 102.51                              | 93.39                       |
| MW-4S         | 4                | S                 | 9/6/02 |                            | 101.93                              | 93.56                       |
| MW-4D         | 4                | D                 | 9/6/02 | 8.37                       |                                     | 91.44                       |
| MW-5\$        | 5<br>5           | S                 | 9/4/02 | 9.80                       | 101.24                              |                             |
| MW-5D         | 5                | D                 | 9/4/02 | 9.50                       | 100.81                              | 91,31                       |
| MW-6S         | 6                | S                 | 9/5/02 | 9.25                       | 99.8                                | 90.55                       |
| MW-6D         | 6                | D                 | 9/6/02 | 9.10                       | 99.69                               | 90.59                       |
| MW-7S         | 7                | S                 | 9/7/02 | 5.13                       | 100.5                               | 95.37                       |
| MW-7D         | 7                | D                 | 9/8/02 | 6.91                       | 102.27                              | 95.36                       |
| MW-8S         | 8                | S                 | 9/5/02 | 6.25                       | 102.17                              | 95.92                       |
| MW-8D         | 8                | D                 | 9/5/02 | 7.35                       | 103.04                              | 95,69                       |
| MW-9D         | 9                | D                 | 9/5/02 | 6.91                       | 102.59                              | 95.68                       |
| MW-10S        | 10               | S                 | 9/5/02 | 8.35                       | 103.31                              | 94.96                       |
| MW-10D        | 10               | D                 | 9/5/02 | 9.48                       | 104.35                              | 94.87                       |
| MW-11         | 11               | S                 | 9/6/02 | 6.70                       | 96.24                               | 89.54                       |
| MW-12         | 12               | S                 | 9/7/02 | 6,68                       | 97.95                               | 91.27                       |
| MW-15         | 15               | S                 | 9/4/02 | 8.82                       | 99.21                               | 90.39                       |
| MW-16S        | 16               | S                 | 9/4/02 | 12.35                      | 104.03                              | 91.68                       |
| MW-16D        | 16               | D                 | 9/4/02 | 11.93                      | 103.70                              | 91.77                       |
| MW-17         | 17               | Š                 | 9/5/02 | 8.79                       | 103.23                              | 94.44                       |
| MW-D          | 101              | Š                 | 9/5/02 | 7.04                       | 102.96                              | 95.92                       |
| MW-A          | 100              | š                 | 9/6/02 | 10.30                      | 105.01                              | 94.71                       |

Table A-3-2. Field parameters for Chevron Orlando, Florida Fall 2002

| Wel!   | Purge<br>Volume<br>(gallons) | pН   | Temperature<br>(*C) | Specific<br>Conductivity<br>(µmhos) | ORP (mV) | D.O.<br>(mg/L) | Clarity<br>(NTU) |
|--------|------------------------------|------|---------------------|-------------------------------------|----------|----------------|------------------|
| MW-1\$ | 3                            | 4.82 | 26.5                | 380                                 | -127.8   | 0.83           | 3.37             |
| MW-1D  | 11                           | 4.79 | 26.7                | 285                                 | -256.8   | 0.39           | 5.93             |
| MW-2S  | 4                            | 5.79 | 26.8                | 160                                 | 63.2     | 2.29           | 303              |
| MW-2D  | 12.5                         | 5.39 | 25.9                | 360                                 | -281.9   | 0.54           | 3,99             |
| MW-38  | 5.5                          | 5,29 | 25.9                | 295                                 | -284.2   | 0.84           | 3.1              |
| MW-3D  | 13.5                         | 3.95 | 24.3                | 140                                 | -210.2   | 0.26           | 9.29             |
| MW-4S  | 4                            | 5.07 | 25.5                | 700                                 | -245.9   | 0.72           | 2.82             |
| MW-4D  | 12                           | 4.28 | 24.7                | 200                                 | -246.7   | 0.04           | 4.09             |
| MW-58  | 3                            | 5.57 | 25.0                | 650                                 | -268.5   | 1.38           | 4.46             |
| MW-5D  | 10                           | 4.78 | 24.4                | 295                                 | -212.9   | 0.67           | 13.0             |
| MW-6S  |                              | NA   | NA                  | NA                                  | NA       | NA             | NA               |
| MW-6D  |                              | NA   | NA                  | NA                                  | NA       | NA             | NA               |
| MW-7S  | 7                            | NA   | NA                  | NA                                  | NA       | NA             | NA               |
| MW-7D  | 14.5                         | NA   | NA                  | NA                                  | NA       | NA             | NA               |
| MW-8S  | 5.6                          | 6.32 | 27.0                | 275                                 | 266.6    | 0.81           | 116              |
| MW-8D  | 12.5                         | 4.21 | 25.1                | 90                                  | -242.5   | 0.22           | 1.45             |
| MW-8D  | 12.5                         | 5.45 | 25.4                | 300                                 | -290.2   | 0.39           | . 379            |
| MW-108 | 4                            | 5.25 | 26.5                | 180                                 | -83.5    | 1.61           | 34.6             |
| MW-10D | 36.5                         | 4,13 | 25.7                | 100                                 | -203.8   | 0.12           | 1.61             |
| MW-11  | 8.6                          | NA   | NA                  | NA                                  | NA       | NA             | NA               |
| MW-12  | 7                            | NA   | NA                  | NA                                  | NA       | NA             | NA               |
| MW-15  | 6                            | 3.92 | 26.1                | 115                                 | 23.9     | 0.79           | 1.38             |
| MW-16S | 5                            | 4.69 | 25.6                | 240                                 | -166.0   | 1.08           | 15.8             |
| MW-16D | 11                           | 4.29 | 25.1                | 130                                 | -177.9   | 0.38           | 0.72             |
| MVV-17 | 6.5                          | 4.95 | 28.5                | 215                                 | -248.7   | 0.5            | 22.4             |
| MW-D   |                              | NA   | NA                  | NA                                  | NA       | NA             | NA               |
| MW-A   |                              | NA   | NA                  | NA                                  | NA       | NA             | NA               |

Table A-3-3. HACH Spectrophotometer analyses for Chevron Orlando, Florida Fail 2002

| Well   | Date   | Fe <sup>2+</sup> (mg/L) |
|--------|--------|-------------------------|
| MW-1S  | 9/5/02 | 0.87                    |
| MW-1D  | 9/5/02 | 0.74                    |
| MW-2S  | 9/5/02 | 0.94                    |
| MW-2D  | 9/5/02 | 0.40                    |
| MW-3S  | 9/5/02 | 0.47                    |
| MW-3D  | 9/6/02 | 2.82                    |
| MW-4S  | 9/6/02 | 0.59                    |
| MW-4D  | 9/6/02 | 0.78                    |
| MW-5S  | 9/4/02 | 0.20                    |
| MW-5D  | 9/4/02 | 0.12                    |
| MW-68  | Sep-02 | NA                      |
| MW-6D  | Sep-02 | NA                      |
| MW-7S  | Sep-02 | NA                      |
| MW-7D  | Sep-02 | NA                      |
| MW-8S  | 9/5/02 | 80.0                    |
| MW-8D  | 9/5/02 | 1.14                    |
| MW-9D  | 9/5/02 | 0.25                    |
| MW-10S | 9/5/02 | 0.07                    |
| MW-10D | 9/5/02 | 0.49                    |
| MW-11  | Sep-02 | NA                      |
| MVV-12 | Sep-02 | NA                      |
| MW-15  | 9/4/02 | 0.02                    |
| MW-16S | 9/4/02 | 0.06                    |
| MW-16D | 9/4/02 | 3.03                    |
| MVV-17 | 9/5/02 | 0.11                    |
| MW-D   | 9/5/02 | NA                      |
| MW-A   | Sep-02 | NA                      |

Table A-3-4. Groundwater pesticide and BTEX analyses for Chevron Orlando, Florida September 2002

|                     | Collection | α-BHC<br>μg/l | д-внс<br>пал | y-BHC<br>µg/l | 8-BHC | Benzene<br>µg/l | Ethylbenzene<br>µg/l | Toluene<br>µg/l | Xylenes<br>µg/l | α-Chlordane<br>μg/l | γ-Chlordane<br>μg/l | gga<br>hgy | MTBE<br>µg/l |
|---------------------|------------|---------------|--------------|---------------|-------|-----------------|----------------------|-----------------|-----------------|---------------------|---------------------|------------|--------------|
| Cleanup<br>Standard |            | 0.05          | 0.1          | 0.2           | 1     | 1               | 700                  | +               | 10,000          | 2                   | 2                   | 0.1        | I.           |
| MW-1S               | 9/5/02     | 0.13          | 0.2          | 0.05          | 0.32  | 0.9             | 6.0                  | 1.2             | 2.2             | 0.1                 | 0.1                 | 0.05       | ış:          |
| MW-1D               | 9/5/02     | 1.3           | 0.83         | 0.5           | 0.5   | 4.8             | 41                   | 1.2             | 98              | 1                   | 1                   | 0.5        | သ            |
| MW-2S               | 9/5/02     | 0.04          | 0.05         | 0.05          | 0.03  | 1               | -                    | I               | ı               | 0.1                 | 0.1                 | 0.05       | ı            |
| MW-2D               | 9/5/02     | 0.04          | 0.32         | 0.05          | 0.03  | 1               | 1                    | 1               | ı               | 0.1                 | 0.1                 | 0.05       | ı            |
| MW-3S               | 9/5/02     | 0.21          | 0.21         | 0.05          | 0.16  | 5.3             | 5.7                  | 1.2             | 1               | 0.1                 | 0.1                 | 0.05       | 9            |
| MW-3D               | 9/6/02     | 0.04          | 90.0         | 90.0          | 0.03  | 6.0             | 6.0                  | 1.2             | 2.2             | 0.1                 | 0.1                 | 0.05       | 5            |
| MW-4S               | 9/6/02     | 1.9           | 5.2          | 0.5           | 3.2   | 6.0             | 6.0                  | 1.2             | 2.2             | 1                   | 1                   | 0.5        | 5            |
| MW-4D               | 3/6/02     | 2.2           | 2.2          | 5.0           | 4.5   | 14              | 120                  | 9               | 330             | -                   | -                   | 0.5        | 25           |
| MW-5S               | 9/4/02     | 0.04          | 0.05         | 0.05          | 0.03  | I               |                      | 1               | 1               | 0.1                 | 0.1                 | 0.05       | ı            |
| MW-5D               | 9/4/02     | 0.04          | 0.05         | 0.05          | 0.03  | I               | 1                    | ı               | ı               | 0.1                 | 0.1                 | 0.05       | 1            |
| MW-8S               | 9/5/02     | 0.04          | 0.05         | 0.05          | 0.03  | 1               | -                    | I               | ŀ               | 0.1                 | 0.1                 | 0.05       |              |
| MW-8D               | 9/5/02     | 0.04          | 0.05         | 0.05          | 60.0  | I               | 1                    | I               | ı               | 0.1                 | 0.1                 | 0.05       | ı            |
| Q6-MM               | 9/5/02     | 80.0          | 0.39         | 0.81          | 0.03  | 0.9             | 6.0                  | 1.2             | 2.2             | 0.1                 | 0.1                 | 0.37       | 5            |
| MW-10S              | 9/5/02     | 0.59          | 27           | 0.28          | 5.9   | 0.9             | 6.0                  | 1.2             | 2.2             | -                   | 1                   | 0.5        | 5            |
| MW-10D              | 9/5/02     | 0.04          | 0.05         | 0.05          | 0.03  | 0.9             | 0.9                  | 1.2             | 2.2             | 0.1                 | 0.1                 | 0.05       | 5            |
| MW-15               | 9/4/02     | 0.04          | 0.05         | 0.05          | 0.03  | 6.0             | 6.0                  | 1.2             | 2.2             | 0,1                 | 0.1                 | 0.05       | 5.0          |
| MW-16S              | 9/4/02     | 0.77          | 4.8          | 0.51          | 1.3   | 0.9             | 6.0                  | 1.2             | 2.2             | τ-                  | -                   | 0.5        | S            |
| MW-16D              | 9/4/02     | 0.76          | 0.76         | 0.04          | 0.13  | 7               | 0.9                  | 1.2             | 2.2             | 0.1                 | 0.1                 | 0.05       | 5            |
| MW-17               | 9/5/02     | 1.6           | 1.3          | 0.37          | 1.9   | 0.9             | 0.0                  | 1.2             | 2.2             | -                   |                     | 0.5        | 5            |
| MW-101D             | 9/5/02     | 1.6           | -            | 0.5           | 2.5   | 4.7             | 40                   | 1.2             | 83              | -                   | -                   | 0.5        | S            |
| MW-103S             | 9/5/02     | 0.15          | 0.19         | 0.05          | 0.13  | 2.7             | 4                    | 1.2             | 9.5             | 0.1                 | 0.1                 | 0.05       | 5            |
| MW-104S             | 9/6/02     | 2.4           | 6.5          | 0.5           | 3.8   | 0.9             | 6.0                  | 1.2             | 2.5             | -                   | -                   | 0.5        | 5            |

<sup>\*</sup>boilded values indicate exceedances of cleanup standards

Table A-4-1. Non-detect summary for samples collected in 2001 and 2002, Chevron Orlando, Florida

| dan Mard      |                   |                    |              |               | !             | Perc Ingi   | l/Bri         |        |                   | Y-BLYC INGN | 5          |                  |
|---------------|-------------------|--------------------|--------------|---------------|---------------|-------------|---------------|--------|-------------------|-------------|------------|------------------|
|               |                   | 20.0               | Į,t          |               |               | -           |               |        |                   | c c         |            |                  |
|               | Anr-01            | Oct-01             | Mar-02       | Sep-02        | Apr-01        | Oct-O1      | Mar-02        | Sep-02 | Apr-01            | Oct-01      | Mar-02     | Sep-02           |
|               | 0.11/0.11         | 0.92               | 0.12         | 0.13          | 0.49/0.49     | 0.33        | 0.22          | 0.2    | <0.05/<0.05       | 60.1        | <0.05      | <0.05            |
|               | ~                 | 0.12               | 4.1          | 6.7           | 1.6           | 0.82        | 40.25         | 0.83   | 0.16              | <0.05       | <0.05      | 0.5              |
|               | 90.0              | 9.0                | <b>4</b> 0.0 | 40.04         | <0.05         | <0.05       | <0.05         | <0.05  | <0.05             | <0.05       | 90.05      | <0.05            |
| WW-2D - 00.   | <0.04/<0.04       | <0.04/<0.04        | 6. <b>2</b>  | <b>40.0</b>   | <0.05/<0.05   | <0.05/<0.05 | <0.05         | 0.32   | <0.05/<0.05       | 0.3/0.28    | <0.05      | <0.05            |
|               | 0.54              | 0.55               | 0.27/0.2     | 0.21          | <0.1          | <0.05       | <0.05/<0.05   | 0.21   | -<br>-<br>-       | <0.05       | <0.05      | <0.05            |
| MW-3D         | 0.12              | 0.06/0.07          | 0.04         | <b>₹0.0</b> ≯ | <0.05         | <0.05/<0.05 | <0.05         | 90.0   | <b>60.05</b>      | <0.05/<0.05 | <0.05      | <b>60.05</b>     |
| MW-4S         | 8.4               | 3.1                | 3.3          | 1.9           | 8.4           | 9.5         | 5.5           | 5.2    | 1.4               | <0.5        | <0.05      | 0.5              |
| MW-4D         | 4.3               | 5.1                | 6            | 2.2           | 3.3           | 3.6         | <0.5          | 2.2    | <0.05             | <0.5        | &<br>80.0% | 9.0              |
| MW-5S         | <0.04             | <0.04              | <b>60.0</b>  | <0.0 <b>4</b> | <0.05         | <0.05       | <0.02         | <0.05  | <0.05             | \$6.05      | 40.05      | <0.05            |
| MW-5D <0.0    | <0.04/<0.04       | <0.04              | 40.05        | <0.04         | <0.05/<0.05   | <0.05       | <0.05         | <0.05  | <0.05/<0.05       | <0.05       | <0.05      | <0.05            |
| MW-7S         |                   |                    |              |               |               |             |               |        |                   |             |            |                  |
| MW-7D         |                   |                    |              |               |               |             |               |        | _                 |             |            |                  |
| MW-85         | \$<br>\$          | <0.0>              | ÷0.0         | <0.04         | <0.05         | 0.29        | <b>40.05</b>  | <0.05  | \$0.0g            | <0.05       | <0.05      | <0.05            |
| MW-8D         | 60.0<br>20.0      | 6.6<br>8.0         | <0.04        | <b>*0.04</b>  | <0.05         | <0.05       | <0.05         | <0.05  | 30.0 <sub>2</sub> | <0.05       | <0.05      | <del>0</del> .05 |
| Д6-ММ         | <0.0              | 90.0               | 0.06         | 0.08          | 0.38          | 0.34        | 0.33          | 0.39   | <b>40.05</b>      | <0.05       | <0.05      | 0.81             |
| MW-10S        | 1.6               | 1.8/1.6            | 0.91         | 0.59          | 24            | 59/60       | 29            | 27     | 2.1               | <1.25/<1.25 | <0.05      | 0.28             |
| MW-10D        | <0.0              | \$0.0 <del>4</del> | <0.04/<0.04  | 49.05         | 0.19          | & O.05      | 0.15/0.17     | 0.05   | <0.05             | <0.05       | <0.05      | <b>40.05</b>     |
| MW-11         |                   |                    | <0.04        |               |               |             | <0.05         |        |                   |             | <0.05      |                  |
| MW-12         | \$0.0°            |                    | <0.04        | -             | <0.05         |             | <b>60.0</b> 5 |        | <0.05             |             | <0.05      |                  |
| MW-15         | 6.0 <b>4</b>      | 0.07               | <0.04/<0.04  | <0.0>         | <b>60.0</b> 5 | <0.05       | <0.05/<0.05   | <0.05  | <0.05             | <0.05       | <0.05      | 6<br>6,05        |
| MW-16S        | 1.8/1.7           | 6.0/6.0            | 0.83         | 0.77          | 27/26         | 8.3/8       | _             | 4.8    | 1,1/1             | 9.0/9.0     | 0.58       | 0.51             |
| MW-16D        | 40.0 <del>4</del> | 0.86               | .021/0.25    | 0.76          | 1.8           | 12          | 5.2/5.9       | 0.76   | 40.05             | 0.7         | <0.05      | 0.04             |
| MW-17         | 6.                | 1.6                | 2.4          | 9,1           | 2.1           | 2.2         | 0.94          | 1.3    | <0.05             | 0.48        | 0.28       | 0.37             |
| MW-103S       |                   |                    |              | 0.15          |               |             |               | 0.19   |                   |             |            | <0.05            |
| MW-104S       |                   |                    |              | 2.4           |               |             |               | 6.5    |                   |             |            | 0.5              |
| number of     |                   |                    |              |               |               | :           | i             |        |                   | ,           | ì          | ,                |
| wells sampled | 8                 | <b>6</b>           | 21           | ম             |               | 61          | 21            | 22     | 20.               | 6           | Z '        | 77               |
| detections    | 6                 | 12                 | =            | 13            |               | 10          | 80            | ř      |                   | 4           | N          | 2                |
| non-detects   | =                 | 7                  | 10           | 9             | 10            | 6           | 13            |        | 91                | 15          | 19         | 12               |

regular/duplicate

Bold values indicate non-detects for two or more consecutive sampling events.

Table A-4-1, Non-detect summary for samples collected in 2001 and 2002, Chevron Orlando, Florida

|               |             | d-BHC µg/l  | ng∕i         |        |              | Benzene µg/l | l/gri       |          |           | Ethylbenzene µg/l | ene µg/l                                                                             |          |
|---------------|-------------|-------------|--------------|--------|--------------|--------------|-------------|----------|-----------|-------------------|--------------------------------------------------------------------------------------|----------|
| Cleanup       |             |             |              |        |              | •            |             |          |           | 707               | _                                                                                    |          |
| Standard      |             |             |              |        |              | -            |             |          |           | - 1               | ֧֧֧֧֧֚֚֚֚֚֚֚֚֡֝֝֝֝֝֝֟֝֝֝֝֝֟֝֓֓֓֓֓֓֓֓֓֜֝֡֝֡֝֡֝֡֝֡֝֡֝֡֜֝֡֝֡֡֝֡֡֝֡֡֝֡֡֝֡֡֝֡֡֝֡֡֡֝֡֡֡֡֡֡ |          |
| Well          | Apr-01      | Oct-01      | Mar-02       | Sep-02 | Apr-01       | Oct-01       | Mar-02      | Sep-02   | Apr-01    | Oct-01            | Mar-02                                                                               | Sep 42   |
| MW-15         | 1.5/1.5     | 0.28        | 0.27         | 0.32   | <0.94<0.9    | 6.0>         | 6.0>        | ۰0°      | <1.1/<1.1 | <0.9              | 9.9                                                                                  | 6.6      |
| MW-1D         | 69          | 0.52        | 2.6          | 0.5    | 2.9          | <0.9         | 2.3         | 4.8      | B         | Ξ                 | 56                                                                                   | Ŧ        |
| MW-2S         | <0.03       | <0.03       | <b>60.03</b> | <0.03  |              |              |             | ;        |           |                   |                                                                                      | ŀ        |
| MW-2D         | <0.03/<0.03 | <0.03/<0.03 | <b>6.0</b>   | <0.03  |              |              |             | ı        |           |                   |                                                                                      | ı        |
| MW-3S         | <0.06       | <0.03       | <0.03/<0.03  | 0.16   | €0.9         | 1.4          | 1.9/1.9     | 5.3      | Ξ         | 1.1               | 4.3/4.8                                                                              | 5.7      |
| MW-3D         | <0.03       | <0.03/<0.03 | <0.03        | 60.03  | <b>6.0</b> > | <0.9/<0.9    | 60>         | <0.9     | ₹.        | <0.94<0.9         | <0.9                                                                                 | €.0      |
| MW-4S         | 8           | 7           | 5.2          | 3.2    | =            |              | -           | 6.0>     | 37        |                   | 4                                                                                    | <0.9     |
| MW-4D         | 6.7         | 10          | 7.4          | 4.5    | 19           |              | 13          | 4        | 230       |                   | 130                                                                                  | 120      |
| MW-5S         | <0.03       | <0.03       | <0.03        | <0.03  |              |              |             | ;        |           |                   |                                                                                      | :        |
| MW-5D         | <0.03/<0.03 | <0.03       | <0.03        | <0.03  |              |              |             | ;        |           |                   |                                                                                      | :        |
| MW-7S         |             |             |              |        | 6.0>         |              | <b>9</b>    |          | 7.5       |                   | 6.0×                                                                                 |          |
| MW-7D         |             |             |              |        | 6.0×         |              | 6.0°        |          | ₽.        |                   | <0.9                                                                                 |          |
| MW-8S         | <0.03       | 0.09        | <0.03        | <0.03  | 6.0>         |              |             | :        | 7         |                   |                                                                                      | I        |
| MW-8D         | <0.03       | <0.03       | <0.03        | <0.03  | €0.9         |              |             | :        | <u>-:</u> |                   |                                                                                      | I        |
| 06-WM         | 0.2         | 0.82        | 0.29         | <0.03  | <0.9         | 6.0>         | <0.9        | <0.9     | 7         | 6.0>              | <0.9                                                                                 | 6.6<br>9 |
| MW-10S        | 6.5         | 19/19       | 8.7          | 5.9    | ¢.0>         | <0.94<0.9    | <b>6</b> 00 | 6.<br>6. | 7.        | <0.9/<0.9         | 6.0×                                                                                 | 6.0<br>9 |
| MW-10D        | <0.03       | <0.03       | <0.03/<0.03  | <0.03  | 1.6          | 40.9         | <0.94<0.9   | 605      | 7         | <b>609</b>        | <0.9<0.9                                                                             | 6.0      |
| MW-11         |             |             | <0.03        |        |              |              |             |          |           |                   |                                                                                      |          |
| MW-12         | <0.03       |             | <0.03        |        |              |              |             |          |           |                   | 1                                                                                    |          |
| MW-15         | <0.03       | <0.03       | <0.03/<0.03  | <0.03  | <b>€</b> 0.9 | 40.9<br>40.9 | <0.9/<0.9   | 6.0>     | 1.1       | 60.0              | <0.9¥<0.9                                                                            | 6,9      |
| MW-165        | 8.5/7.7     | 2/2         | 2.2          | 1.3    | <0.9/<0.9    |              | 60.9        | 6.0      | 41.141.1  |                   | 6.0                                                                                  | 6.6      |
| MW-16D        | 0.29        | 3.9         | 1.1/1.3      | 0.13   | 3.3          |              | 1.3/1.4     | C)       | ₹         |                   | <0.9/<0.9                                                                            | 6.9      |
| MW-17         | 6.5         | 4.1         | 2.7          | 1.9    | 4.8          |              | 6.0≥        | 6.0      | 3.1       |                   | 6.<br>6.                                                                             | €        |
| MW-103S       |             |             |              | 0.13   |              |              |             | 5.7      |           |                   |                                                                                      | 4.4      |
| MW-104S       |             |             |              | 3.8    |              |              |             | <0.9     |           |                   |                                                                                      | 6.6      |
| number of     |             |             | İ            |        |              |              |             |          |           |                   | !                                                                                    | •        |
| wells sampled | 50          |             | 5            | 8      |              | 60           | 16          | 16       | <u> </u>  | <b>G</b>          | 16                                                                                   | 16       |
| detections    | 6           | 0           | 6            | 12     | 9            | -            | ഹ           | Ф        |           | 2                 | 4                                                                                    | ń        |
| non-detects   | 1           | 6           | 12           | 10     |              | _            | =           | <u></u>  | 13        | 9                 | 12                                                                                   | -1       |

regular/duplicate

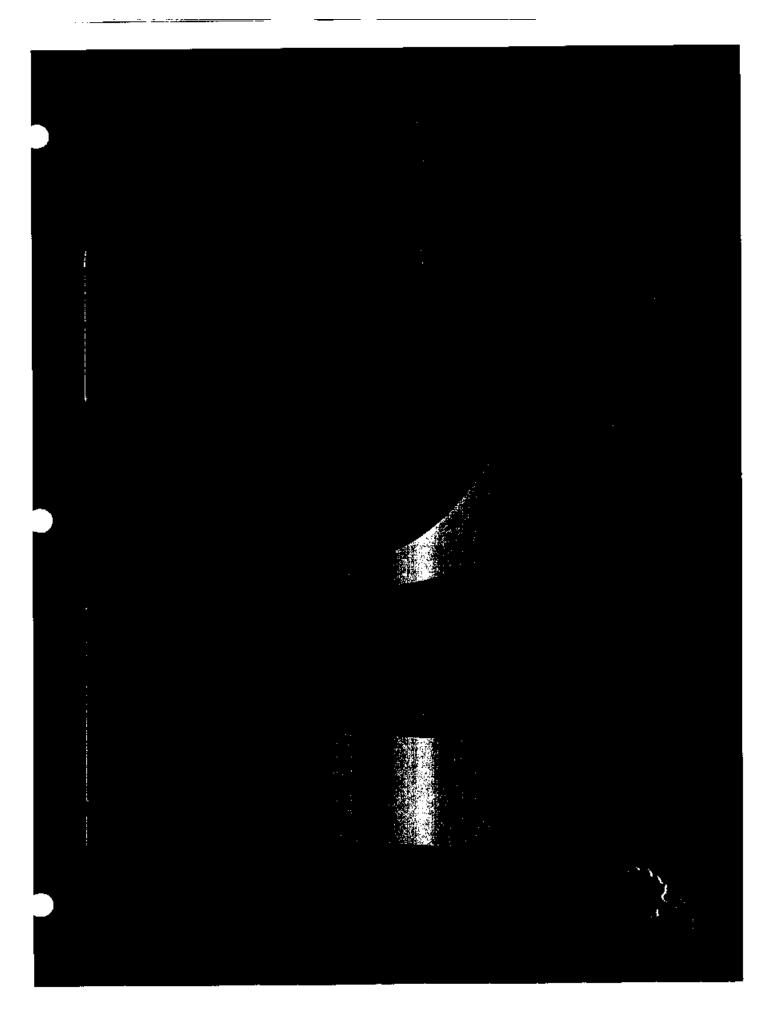
Bold values indicate non-detects for two or more consecutive sampling events.

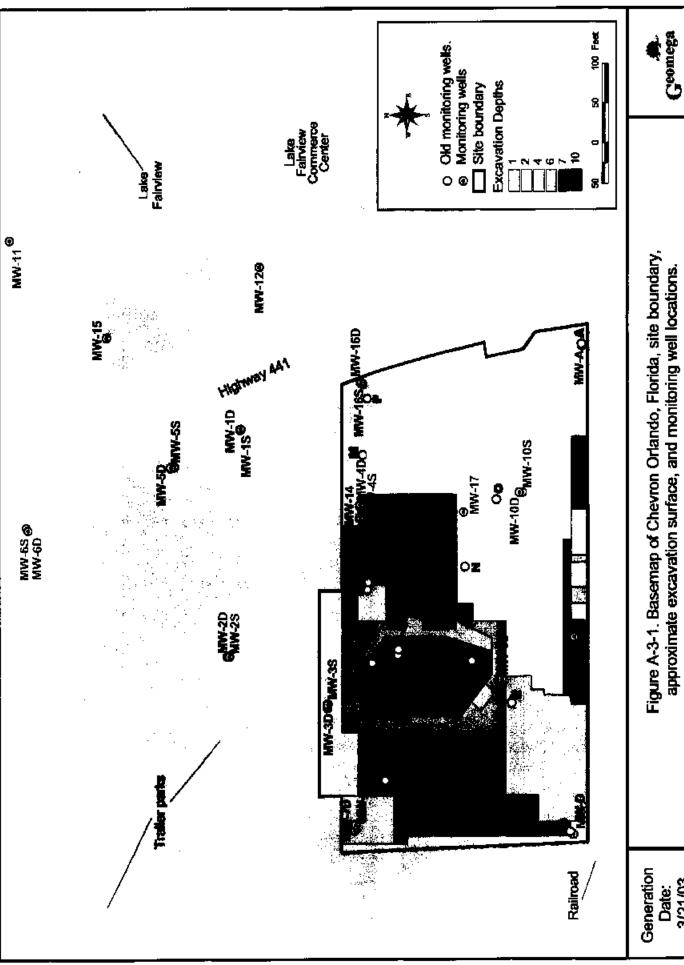
Table A-4-1. Non-detect summary for samples collected in 2001 and 2002, Chevron Orlando, Florida

|               |        | Tolue     | Toluene µg/l |             | •          | Xylenes µg/ | l/grt :                  |        |                  | o-Chlordane µg/l | пе по               |              |
|---------------|--------|-----------|--------------|-------------|------------|-------------|--------------------------|--------|------------------|------------------|---------------------|--------------|
| Cleanup       |        |           |              |             |            | 10 000      | Ģ                        |        |                  | ~                |                     |              |
| Well          | Anr-01 | 04-01     | Mar-00       | Sanco       | Anr-01     | 000         | Mar-02                   | Sen-02 | Apr-01           | 004-01           | Mar-02              | Sep-02       |
| MW-15         | ₹      | <1.2      | 4.2          | 4.2         | 4.1/4.1    | 2.2         | 2.2                      | <22    | <0.1/<0.1        | 40.5             | <b>c</b> 0.1        | 60.1         |
| MW-1D         | ▽      | <1.2      | 4.2          | 41.2        | 120        | 4.2         | 58                       | 98     | <0.1             | 69.1             | <0.5                | ⊽            |
| MW-2S         |        |           |              | ı           |            |             |                          | 1      | <0.1             | <b>6</b> 0.1     | ₹0.7                | &<br>1.      |
| MW-2D         |        |           |              | ı           |            |             |                          | ı      | <0.1/<0.1        | <0.1/<0.1        | €0.1                | ć0.1         |
| MW-3S         | ⊽      | <1.2      | <1.2<1.2     | 4.5         | =          | 2.1         | 4.4/4.6                  | =      | <0.5             | 6<br>1.0         | <b>40.1/&lt;0.1</b> | ₽.           |
| MW-3D         | ⊽      | <1,2/<1.2 | 4.2          | 7.          | .i.        | 22/02       | <2.2                     | <22    | <b>60.1</b>      | 40.1/<0.1        | .6<br>1.0           | <b>é</b> .   |
| MW-4S         | 2.2    |           | <1.2         | 7.<br>₹     | 100        |             | 13                       | <2.2   | <b>60.1</b>      | ⊽                | ₹                   | ⊽            |
| MW-4D         | 5      |           | 7.8          | g           | 999        |             | 290                      | 330    | ₩.               | ⊽                | 7                   | ⊽            |
| MW-55         |        |           |              | i           |            |             |                          | ı      | €.               | <0.1             | <b>-0</b> .         | ф<br>Т       |
| MW-5D         |        |           |              | 1           |            |             |                          | ı      | <0.1/<0.1        | <b>60.1</b>      | <b>.</b> 0          | <b>-0.</b>   |
| MW-7S         | ⊽      |           | <b>1.2</b>   |             | 7          |             | 422                      |        |                  |                  |                     |              |
| JAW-7D        | ⊽      |           | 412          |             | 7          |             | 22                       |        |                  |                  |                     |              |
| MW-8S         | ⊽      |           |              | ı           | <b>1.1</b> |             |                          | ı      | <del>c</del> 0.1 | . <b>6</b>       | . <del>0</del> .    | <b>60.1</b>  |
| MW-8D         | ⊽      |           |              | ı           | 1.1        |             |                          | 1      | 8                | 6.               | <b>60.1</b>         | ₩.           |
| MW-9D         | 7      | <1.2      | 7.5          | Z. C        | ₹          | 2.2         | 422                      | 4.2    | ₽.               | 6.               | <0.1                | <del>6</del> |
| MW-10S        | ⊽      | <1.2/<1.2 | 4.2          | 7.72        | <u>.</u> . | 22/22       | 42                       | ₹.5    | 6.               | <2,5/<2.5        | 8                   | ⊽            |
| MW-10D        | ⊽      | 4.2       | <1.2/<1.2    | 717         | 7          | <2.2        | 2.342.2                  | 42.2   | <0.1             | ₽.               | <0.1/<0.1           | ₽            |
| MW-11         |        |           |              |             |            |             |                          |        |                  |                  | ₽.                  |              |
| MW-12         |        |           |              |             |            |             |                          |        | .60.1            |                  | 40.7                |              |
| MW-15         | 7      | 4.2       | <1.2<1.2     | <b>~1.2</b> | 7.7        | 4.2         | <b>2.2</b> < <b>2.</b> 2 | 2.2    | <b>60.1</b>      | €                | <0.1/<0.1           | <del>6</del> |
| MW-16S        | ₹<br>2 |           | 4.5          | 41.2        | <1.1/<1.1  |             | <2.2                     | 42     | <0.1/<0.1        | ₹                | ⊽                   | ⊽            |
| C91-MM        | ⊽      |           | <1,2/<1.2    | <1.2        | 1.1        |             | 2.2/2.2                  | <22    | <0.1             | ₽.               | <b>₩</b>            | 승<br>-       |
| MW-17         | ∇<br>  |           | 41.2         | <1.2        | 4.1        |             | <2.2                     | 7.7    | <b>60.1</b>      | 7                | ∇                   | ⊽            |
| MW-103S       |        |           |              | <1.2        |            |             |                          | 9.5    |                  |                  |                     | 6.           |
| MW-104S       |        |           |              | <1.2        |            |             |                          | €.2    |                  |                  |                     | ⊽            |
| number of     |        |           |              |             |            |             |                          |        |                  |                  |                     |              |
| wells sampled | 1      | 80        | 16           | 16          | 17         | 80          | 46                       | 16     | ଯ                | 51               |                     | ช            |
| detections    | 2      | 0         | _            | -           | 4          | _           | 4                        | 4      |                  | 0                |                     | <b>ō</b> ¨   |
| non-detects   | 16     | 8         | 5            | 15          | 4          | 7           | 22                       | 12     | 20               | 19               | 23                  | 22           |

regular/duplicate

Bold values indicate non-detects for two or more consecutive sampling events.

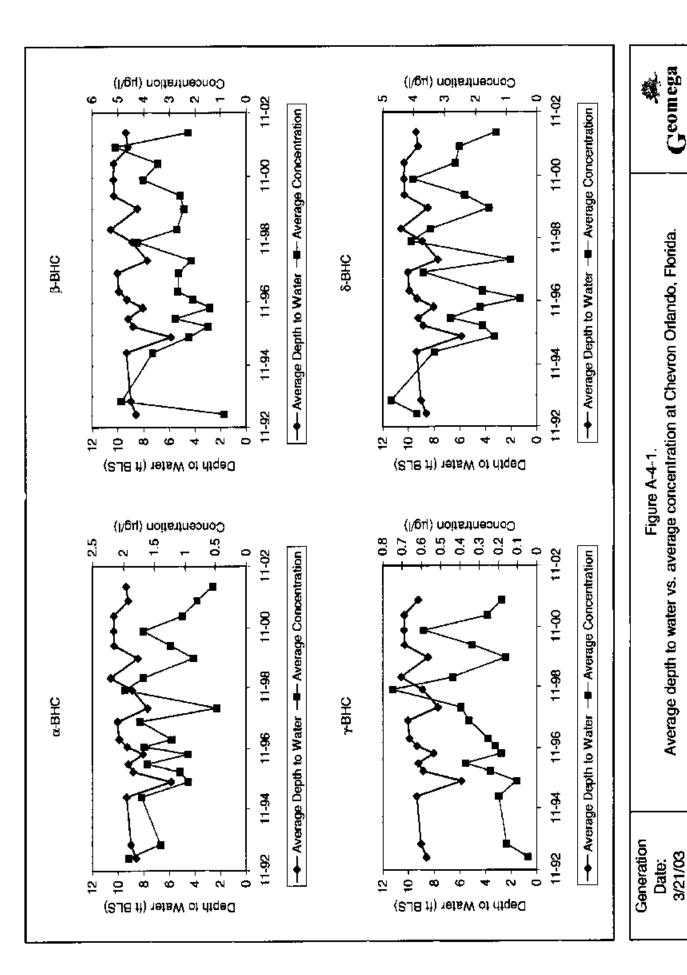

Table A-4-1. Non-detect summary for samples collected in 2001 and 2002, Chevron Orlando, Florida


|               |              | न-Chlordane µ9 | ine µg/l     |              |             | lou dad      | hg/l           |              |              | MTBE µg/     | /on           |        |
|---------------|--------------|----------------|--------------|--------------|-------------|--------------|----------------|--------------|--------------|--------------|---------------|--------|
| Cleanup       |              |                |              |              |             |              |                |              |              |              |               |        |
| Standard      |              | 2              |              | _            |             | 0.1          |                |              |              |              |               |        |
| Well          | Apr-01       | Oct-01         | Mar-02       | Sep-C2       | Apr-01      | Oct-01       | Mar-02         | Sep-02       | Apr-01       | Oct-01       | Mar-02        | Sep-02 |
| MW-1S         | <0.1/<0.1    | <0.2           | £.           | 6            | <0.05/<0.05 | <b>40.1</b>  | <0.05          | <0.05        | <5/<5        | ₩            | <b>'</b> ©    | ψŞ     |
| MW-1D         | <b>60.1</b>  | <0.1           | 40.5         | 7            | <0.05       | <0.05        | 6.25           | <0.5         | ΑŞ           | ů            | Ą             | ιę     |
| MW-2S         | <0.1         | <0.1           | £0.          | <b>6</b> 0.1 | <0.05       | <0.05        | <0.05          | <0.05        |              |              |               | 1      |
| MW-2D         | <0.1/<0.1    | <0.1/<0.1      | 60.1         | <0.1         | <0.05/<0.05 | <0.05/<0.05  | <0.05          | <0.05        |              |              |               | ı      |
| WW-3S         | <0.5         | 40.1           | <0.1/<0.1    | 6.           | 2.6         | <0.05        | <0.05/<0.05    | <b>40.05</b> | ıç.          | ţ            | <5/<5         | Ŷ      |
| MW-3D         | 6            | <0.1/<0.1      | <b>60.1</b>  | €            | <0.05       | <0.05/<0.05  | <0.05<br><0.05 | <0.05        | 6            | <b>6</b> 455 | Ą.            | 40     |
| MW-4S         | 6.0          | ⊽              | ⊽            | ⊽            | <0.05       | <0.5         | <0.5           | <0.5         | 40           |              | ų.            | 40     |
| MW-4D         | ¢0.1         | ⊽              | ⊽            | ⊽            | <0.05       | <0.5         | <0.5           | 0.5          | φ.           |              | ٠<br>19       | 52     |
| MW-5S         | ¢0.1         | <0.1           | 40.1         | 6.           | <0.05       | <0.05        | <0.05          | 0.05         |              |              |               | ı      |
| MW-5D         | <0.1/<0.1    | <b>60.1</b>    | <0.1         | £0.1         | <0.05/<0.05 | <0.05        | <0.05          | 0.05         |              |              |               | 1      |
| MW-7S         |              | •              | 1            | •            |             |              |                |              | \$           |              | Ą.            |        |
| MW-7D         |              |                |              |              |             |              |                |              | 9            |              | ιŜ            |        |
| WW-8S         | 6.5          | <b>.0</b>      | <b>60.1</b>  | 6            | <0.05       | <0.05        | <0.05          | <0.05        | り            |              |               | ı      |
| MW-8D         | 6.5          | <0.1           | <b>.0</b> .1 | <u>\$</u>    | <0.05       | <0.05        | <0.05          | < 0.05       | የ            |              |               | 1      |
| 06-WW         | 90           | <b>60.1</b>    | €0.1         | <b>60.1</b>  | <0.05       | 0.73         | <0.05          | 0.37         | ٧            | Ą.           | 45            | û      |
| MW-10S        | 2.7          | <2.5/<2.5      | Ş            | ⊽            | <0.05       | <1.25/<1.25  | ⊽              | <0.5         | ₩.           | \$,<br>\$,   | ŝ             | ů      |
| MW-10D        | <b>.</b> 0.1 | 7.0°           | 40.1/<0.1    | <u>6</u>     | <0.05       | <0.05        | <0.05/<0.05    | <0.05        | 37           | Ą            | <b>45/</b> 45 | 6      |
| MW-11         |              |                | 6.0          |              |             |              | <0.05          |              |              |              |               |        |
| MW-12         | ₽.           |                | <b>*0.</b> 1 |              | <0.05       |              | <0.05          |              |              |              |               |        |
| MW-15         | 40.1         | 60.1           | <0.1/<0.1    | 0.           | 40.05       | <0.05        | <0.05/<0.05    | <0.05        | ∜            | 49           | <5/<5         | Ŷ      |
| MW-16S        | 3.3/2.9      | 7              | 7            | ⊽            | <0.05/<0.05 | <0.5/<0.5    | <0.5           | <0.5         | <b>65/65</b> |              | ŝ             | υÇ     |
| WW-16D        | 8            | <0.1           | 7            | <0.1         | <0.05       | <b>60.05</b> | <0.5/<0.5      | <0.05        | 5.4          |              | <b>65/65</b>  | ₩,     |
| MW-17         | 1.5          | ∇              | 7            | ⊽            | <0.05       | 40.5         | <0.5           | <0.5         | ₩,           |              | \$            | ŝ      |
| MW-103S       |              |                |              | ₽.           |             |              |                | <0.05        |              |              |               | Ŷ      |
| MW-104S       |              |                |              | ⊽            |             |              |                | <b>40.5</b>  |              |              |               | Ŷ      |
| number of     |              |                | •            |              |             |              |                |              | _            |              |               |        |
| wells sampled | 20           | 19             | 27           | 22           | 8           | 19           | 21             | ช            | _            | <b>100</b>   | 16            | 16     |
| detections    | 6            | 0              | ¢            | 0            | _           | _            | 0              | `            |              | 0            | 0             |        |
| non-detects   | 17           | 19             | 21           | 22           | 19          | 18           | ~              | [2           | 16           | 8            | 9             | 16     |

regular/duplicate

Bold values indicate non-detects for two or more consecutive sampling events.

P: Cherron Crismator File 2002 Sampling Tables Filed



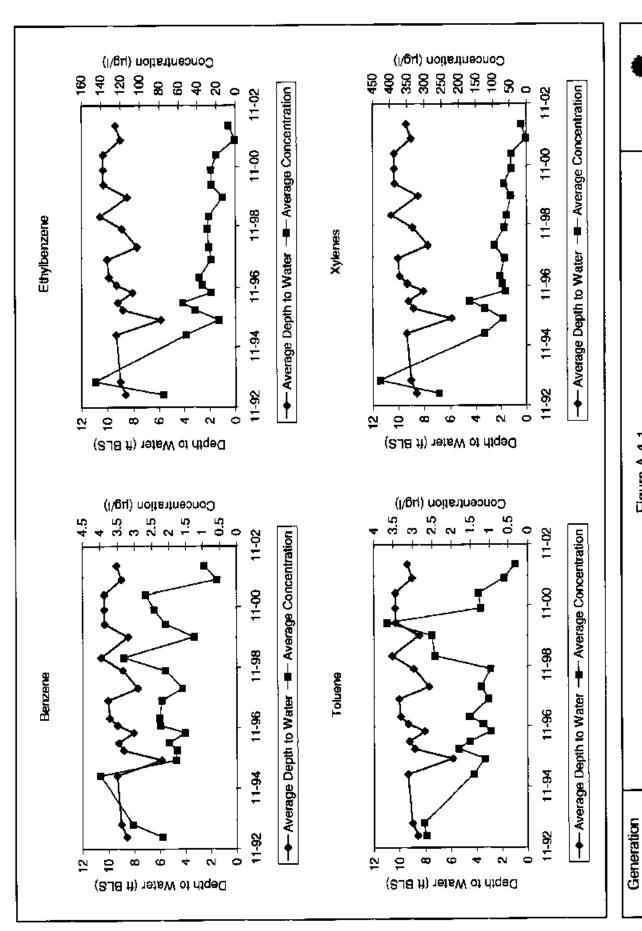



approximate excavation surface, and monitoring well locations.

n serfece & wafte (03002 layou

3/21/03




PronavanOrtando/Eve Year Reventifinal Reports Figures Mapped A Figure A-4-1.34s

Page 1 of 2

Average depth to water vs. average concentration at Chevron Orlando, Florida.

3/2003

Ceomega



Ceomega

3/20/03

Average depth to water vs. average concentration at Chevron Orlando, Florida 3/21/03

Date:

Prichemonicotrando/Five Year Reviser/Finst Report: Figures/Appect A Figure A-4-1.x/s

Figure A-4-1.

Appendix B. Summary of COC analyses, Chevron Orlando, Florida

| Well ID Date   |           | 5        | 8-5HC-2-5HC-13 | ¥-RHC!S |        | HC[8-BHC]Benzene | Ethylbenzene | loluene | Xylenes  | Toluene Xylenes α-Chlordane γ-Chlordane Chlordane | y-Chlordane | Chlordane |                | M 1 BE     |
|----------------|-----------|----------|----------------|---------|--------|------------------|--------------|---------|----------|---------------------------------------------------|-------------|-----------|----------------|------------|
| ŀ              | Duplicate | /bd      | hg/l           | l/Bri   | jβ/l } | l/grt            | l/grl        | l/gr    | hgy      | l/gri                                             | l/gri       | l/grl     | l/gr           | l/6n       |
|                |           | 0.26     |                |         |        | 5.4              | 53           | 7       | 52       |                                                   |             | Q         | 2              | 8<br>V     |
| MW-15 Apr-93   |           | 0.92     | 0.77           |         |        | 1.1              | 35           | 4       | 9        |                                                   |             | Q         | Q              | \$         |
| ţ              |           | 5        | 2              |         |        | 5.9              | 63           | 5.      | 120      |                                                   |             | QN        | QN             | ₩.         |
| MW-1S Apr-95   |           | 2.5      | 6.             |         |        | 9                | 120          | 5.6     | 360      |                                                   |             | QN        | Q              | 13         |
| MW-1S Oct-95   |           | 1.9      |                |         |        | 5.5              | <4.5         | 5       | 320      |                                                   |             | QN        | Q              | <25        |
| MW-1S Feb-96   |           | 1.4      | 1.4            |         |        | 8                | 240          | 13      | 720      |                                                   |             | QN        | QN             | 6.8        |
| MW-15 May-96   |           | 17       | 1.4            |         |        | 5.2              | 290          | 7.4     | 800      |                                                   |             | QN        | QN             | < <u>5</u> |
| MW-1S Sep-96   |           | 1.4      | 0.76           |         |        | 1.9              | 10           | ⊽       | 53       |                                                   |             | ND        | Q              | \$         |
| MW-1S Dec-96   |           | 3.1      | T              |         |        | 4.6              | 120          | 3.8     | 240      |                                                   |             | ND        | QN             | \$         |
| MW-15 Mar-97   |           | 3.9      | <0.5           |         |        | 9                | 200          | 8.5     | 320      |                                                   |             | QN        | Q              | <b>2</b> 5 |
| ┼              |           | 4        | 7              | 2       | 9      | 5.8              | 187          | 4.8     | 374.2    | ;<br>;<br>;<br>;                                  |             | 2         | Q              | <0.63      |
| MW-15 Mar-98   |           | <0.05    | ¢0.05          |         |        | 1.9              | 60.6         | 2.1     | 129.2    |                                                   |             | 2         | Q              | ₽          |
| MW-1S Oct-98   |           | 1.8      | i .            |         |        | 3.6              | 54.1         | 1.26    | 128.9    |                                                   |             | ON        | QN             | Ş          |
| MW-15 Mar-99   |           | 2.5      | ş              |         |        | 4                | 39           | \$      | 49       |                                                   |             | QN        | ON             | Ą          |
| MW-1S Nov-99   |           | 0.26     | 0.48           |         |        | 9.0×             | ٧            | Ą       | 42       |                                                   |             | ₽         | 0.1            | \$         |
| MW-1S Apr-00   |           | 1.4      | 1.7            |         |        | ⊽                | 8.8          | \$      | 10       | <0.25                                             | <0.25       |           | <0.5           | <b>\$</b>  |
| MW-1S Oct-00   |           | 0.84     | 1.1            |         |        | 6.0>             | 4.1          | ⊽       | ۲.<br>۲. | ⊽                                                 | ۲           |           | <0.5           | \$         |
| MW-1S Apr-01   |           | 0.11     | 0.49           |         |        | <0.9             | <1.1         | ٧       | <1.1     | <0.1                                              | <0.1        |           | <0.05          | \$         |
| MW-1S   Apr-01 | Duplicate | 0.11     | 0.49           |         |        | -<br>0.0≻        | <1.1         | <را     | <1.1     | <0.1                                              | <0.1        |           | \$0.05<br>\$1  |            |
| MW-15 Oct-01   |           | 0.92     |                |         |        | <0.9             | <0.9         | ۲,      | 2.2      | <0.2                                              | <0.2        |           | ٥.             | Ą          |
| MW-15   Mar-02 |           | 0.12     | i              |         |        | 6.0>             | €.0          | 4.2     | 22       | ₽.                                                | ٥.<br>1.    |           | \$0.02<br>0.03 |            |
| MW-15 Sep-02   |           | 0.13     | 0.2            |         |        | €.0>             | <0.9         | <1.2    | 42.2     | -0.1                                              | ٥.1         | - {       | <0.05          | ٠          |
| ·              |           | ⊽        | ⊽              |         |        | <1.2             | 29           | 7       | 520      |                                                   |             |           | ì              |            |
| 7              |           | 2.2      | ii             | Q       | 2.4    | 3.6              | 240          | 5.3     | 620      |                                                   |             | R         | 2              |            |
| MW-1D Sep-93   |           | 2        |                | Q       |        | 3.1              | 120          | 6.3     | 200      |                                                   |             | ļ         | 2              |            |
| MW-1D Apr-95   |           | 0.77     |                | Q       | . ,    | 1.4              | 45           | ٧       | 22       |                                                   |             | 2         | 2              |            |
| MW-1D Oct-95   |           | <b>—</b> | <0.05          | 9       | , ,    | 2.8              | 14           | 1.8     | 140      |                                                   |             |           | 2              | 2          |
| MW-1D Feb-96   |           | 0.96     | 0.92           | Q       | 2 1    | 9                | 270          | 6.3     | 530      |                                                   |             |           | Q              |            |
| MW-1D May-96   |           | 0.8      |                | 2       |        | 4.6              | 300          | 4.1     | 610      |                                                   |             | ļ         | 2              |            |
| MW-1D   Sep-96 |           | 0.59     | ł 1            | Q       |        | 2.3              | 150          | 2.1     | 58<br>78 |                                                   | Ì           |           | 2              | 2          |
| MW-1D Dec-96   |           | 0.92     | 0.59           | Q       |        | 2.4              | 170          | 1.9     | 230      |                                                   |             | į         | 2              |            |
| MW-1D Mar-97   |           | 1.1      | <0.05          | Q       |        | 3                | 200          | \$?     | 320      |                                                   |             |           | 2              |            |
| MW-1D Oct-97   |           | 1        | -              | 2       |        | 2.4              | 174          | 2.1     | 518.6    |                                                   |             |           | 2              |            |
| MW-1D Mar-98   |           | <0.05    | <0.05          | Ŷ       | 1 1    | 8.9              | 315          | 8.5     | 1357     |                                                   |             | į         | 2              |            |
| MW-1D Oct-98   |           | 1.2      | <0.05          | 2       | •      | 3.17             | 180          | 2.11    | 501.7    |                                                   |             | į         | 2              | 2          |
| MW-1D   Mar-99 |           | 0.93     | 1,1            | Q       |        | ဗ္               | 230          | \$Ç     | 240      |                                                   |             | 1         | 2              | 2          |
| ****           | Duplicate | 0.81     |                |         | 9.     | 3.8              | 210          | \$      | 200      | ~                                                 |             |           |                | L          |
|                |           | 0.74     | -              | <0.05   | 12     | 3.5              | 150          | \$      | 230      |                                                   |             | V         | V 0 7          | ₽          |
| MW-1D Nov-99   | Duplicate | 0.0      | -              | <0.05   | 1.3    | 2.8              | 130          | \$      | 520      |                                                   |             | <u>.</u>  | <del>\</del>   | Ą          |

Page 1 of 14

Appendix B. Summary of COC analyses, Chevron Orlando, Florida

| 1967   1967   1967   1967   1967   1967   1967   1967   1967   1560   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1   40.1  |                                                  |              | a-BHC        | a-BHC 0-BHC 7-BF |            | C[8-BHC]     | Benzene           | Ethylbenzene | Toluene | Xylenes  | a-Chlordane  | Toluene Xylenes aChlordane y-Chlordane Chlordane | Chlordane | aga   | MTBE   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------|--------------|------------------|------------|--------------|-------------------|--------------|---------|----------|--------------|--------------------------------------------------|-----------|-------|--------|
| Nov.96 Replicate         Originate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |              |              | ,<br>je          | <u>161</u> | ng/l         | l/grl             | Vor          | l/gr    | <u> </u> | hgd.         | lgu.                                             | l/gd      | l/Br  | l/gri  |
| April 10         O.95         1.7         < 0.05         1.7         < 0.05         1.7         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ;                                                | 9 Replicate  |              | 0.45             | <0.05      | 0.86         | 2.9               | 150          | 1.5     | 200      | <0.1         | <0.1                                             |           | <0.05 | <5     |
| App-00         Duplicate         1.2         2         0.13         1.2         4         190         <5         700         <0.06         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  | 0            | F            | 1.7              | <0.05      | 1.2          | ×10               | 150          | 9       | 680      | <0.05        | <0.05                                            |           | <0.1  | <50    |
| Öd-10         1,7         3,7         0,19         3,4         49         190         <10         50                                                                                                               <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | }~~~                                             |              | 1.2          | 2                | 0.13       | 1.2          | 4                 | 190          | \$      | 700      | <0.05        | <0.05                                            |           | <0.1  |        |
| April                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <del></del> -                                    |              | 1.7          | 3.7              | 0.19       | 3.4          | 6                 | 190          | 0.v     | 28       | <b>*0.1</b>  | <0.1                                             |           | <0.05 |        |
| Ocidinary         612         026         402         411         <12         <22         <01         <01           Sep-02         13         618         0.65         2.6         4.8         41         <12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del>  -</del>                                   | 1            | 2            | 1.6              | 0.16       | 3            | 2.9               | 63           | ⊽       | 120      | <0.1         | <0.1                                             |           | <0.05 | : 1    |
| Mistrick   14   40,226   40,226   23   236   412   545   40,55   416   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417   417 | <del>ļ-</del> -                                  | 1            | 0.12         | 0.82             | <0.05      | 0.52         | 6.0×              | 1.1          | <1.2    | <2.2     | <0.1         | <0.1                                             |           | <0.05 |        |
| Sep-02         13         0.83         0.6         2.0         4.8         4.1         <12         86         1         1           Sep-02         Duplicate         1.6         1.6         1.6         1.6         1.7         0.6         4.0         6.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ┢                                                | 2            | 4.           | <0.25            | <0.25      | 2.6          | 2.3               | 26           | <1.2    | 28       | <0.5         | <0.5                                             |           | <0.25 | י י    |
| Sep-02 Duplicate         1,6         1,6         2,5         4,7         4,0         <1,2         63         1,7         1,7         4,0         <1,2         63         1,1         1,1         0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del>} -</del>                                   | 2            | 1.3          | 0.83             | 0.5        | 2.0          | 4.8               | 14           | <1.2    | 98       |              | -                                                |           | <0.5  | . :    |
| Oct 91         4,0,6         4,0,6         ND         4,0,9         ND         4,0,9           App-33         4,0,6         4,0,6         ND         4,0,9         ND         4,0,9           App-33         4,0,6         4,0,6         ND         4,0,9         ND         4,0,9           App-35         4,0,6         4,0,6         ND         4,0,9         ND         4,0,9           App-36         4,0,6         4,0,6         ND         4,0,0         ND         4,0,9           App-36         4,0,6         4,0,6         ND         4,0,0         ND         4,0,9           App-36         4,0,6         4,0,6         ND         4,0,9         ND         4,0,9           App-36         4,0,6         4,0,6         ND         4,0,9         ND         4,0,9           App-36         4,0,6         4,0,6         ND         4,0,9         ND         4,0,9           Sep-36         4,0,6         4,0,6         ND         4,0,9         ND         4,0,9           App-36         4,0,6         4,0,6         ND         4,0,9         ND         4,0,9           App-36         4,0,6         4,0,6         ND         4,0,0 <td>┉</td> <td><del> </del></td> <td><u> </u></td> <td>-</td> <td>0.5</td> <td>2.5</td> <td>4.7</td> <td>40</td> <td>&lt;1.2</td> <td>8</td> <td>-</td> <td>-</td> <td></td> <td>0.5</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ┉                                                | <del> </del> | <u> </u>     | -                | 0.5        | 2.5          | 4.7               | 40           | <1.2    | 8        | -            | -                                                |           | 0.5   |        |
| Apr.93         Q 0B         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\vdash$                                         | <del>,</del> | <del></del>  | <0.05            | S          | <0.05        | 2                 | 6.0>         | 2       | 605      |              |                                                  | 2         | 2     | § i    |
| Sep 93         Q05         Q05         ND         G065         ND         G065         ND         G06         C005         C005 </td <td>┼</td> <td>3</td> <td>&lt;0.05</td> <td>يعيدي</td> <td>2</td> <td>&lt;0.05</td> <td>2</td> <td>0.0</td> <td>2</td> <td>6.0×</td> <td></td> <td></td> <td>2</td> <td>Q</td> <td>ì</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ┼                                                | 3            | <0.05        | يعيدي            | 2          | <0.05        | 2                 | 0.0          | 2       | 6.0×     |              |                                                  | 2         | Q     | ì      |
| Apr-96         -0.05         -0.05         ND         -0.05         ND         -0.05         ND         -0.09         ND         -0.09           Oct-96         -0.05         -0.05         ND         -0.09         ND         -0.09         ND         -0.09           Sep-96         -0.05         -0.05         ND         -0.05         ND         -0.09         ND         -0.09           Sep-96         -0.05         -0.05         ND         -0.05         ND         -0.09         ND         -0.09           Sep-96         -0.05         -0.05         ND         -0.06         ND         -0.09         ND         -0.09           Sep-96         -0.05         -0.05         ND         -0.06         ND         -0.09         ND         -0.09           Sep-96         -0.05         -0.05         ND         -0.06         ND         -0.09         ND         -0.09           Oct-97         -0.05         -0.05         ND         -0.06         ND         -0.09         ND         -0.09           Oct-98         -0.05         -0.05         ND         -0.06         ND         -0.09         ND         -0.09           Oct-98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                | 3            | <0.05        | <0.05            | 2          | <0.05        | S                 | <0.9         | CN      | 6.0      |              |                                                  | QN        | 2     | :      |
| Oct 96         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05 <t< td=""><td><del>                                     </del></td><td>5</td><td>&lt;0.05</td><td>+</td><td>2</td><td>&lt;0.05</td><td>9</td><td>1.1</td><td>S</td><td>4.6</td><td></td><td></td><td>2</td><td>QN</td><td>ą.</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del>                                     </del> | 5            | <0.05        | +                | 2          | <0.05        | 9                 | 1.1          | S       | 4.6      |              |                                                  | 2         | QN    | ą.     |
| Feb 96         -0.05         -0.05         -0.05         ND         -0.09         ND         -0.09           May-56         -0.05         -0.05         ND         -0.09         ND         -0.09         ND         -0.09           Sep-96         -0.05         -0.05         -0.05         ND         -0.09         ND         -0.09           Sep-96         -0.05         -0.05         ND         -0.09         ND         -0.09           Sep-96         -0.05         -0.05         ND         -0.09         ND         -0.09           Mar-97         -0.05         -0.05         ND         -0.09         ND         -0.09           Mar-97         -0.05         -0.05         ND         -0.09         ND         -0.09           Mar-99         -0.05         ND         -0.09         ND         -0.99         ND           Mar-99         -0.05         ND         -0.09         ND         -0.99         ND         -0.99           Mar-99         -0.05         ND         -0.05         ND         -0.05         ND         -0.09           Mar-90         -0.05         ND         -0.05         ND         -0.05         -0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <del> </del>                                     | 5            | <0.05        | -                | 2          | <0.05        | S                 | €0.0>        | 2       | 6.0>     |              |                                                  | 9         | 9     |        |
| May-96         -605         -606         ND         -606         ND         -609         ND         -609           Sap-96         -605         -605         -606         ND         -609         ND         -609           Sap-96         -605         -605         -606         ND         -609         ND         -609           Sap-96         -605         -606         ND         -609         ND         -609         ND         -609           Mar-97         -605         -605         ND         -606         ND         -609         ND         -609           Mar-98         -605         -605         ND         -606         ND         -609         ND         -609           Mar-99         -605         -605         ND         -606         ND         -609         ND         -609         ND         -609           Mar-99         -605         -605         ND         -606         ND         -609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del> </del>                                     | 9            | <0.05        | ÷                | QN         | <0.05        | Q                 | 6.0>         | QN      | <0.0     |              |                                                  | 2         | S     |        |
| Sep-56         G.05         G.05         ND         G.05         ND         G.05         ND         G.09         ND         G.09           Dec-36         G.05         G.05         ND         G.09         ND         G.09         ND         G.09           Dec-36         G.05         G.05         ND         G.09         ND         G.09         ND         G.09           Mar-37         G.05         G.05         ND         G.045         ND         G.03         ND         G.09         ND         G.09           Mar-38         G.05         G.05         ND         G.05         ND         G.09         ND         G.09         ND         G.09           Mar-39         G.05         G.05         ND         G.05         ND         G.09         ND         G.09         G.09 <td< td=""><td>┰</td><td>9</td><td>&lt;0.05</td><td><b>.</b></td><td>2</td><td>&lt;0.05</td><td>Q</td><td>6.0&gt;</td><td>Q.</td><td>&lt;0.9</td><td></td><td></td><td>⊋</td><td>2</td><td>1</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ┰                                                | 9            | <0.05        | <b>.</b>         | 2          | <0.05        | Q                 | 6.0>         | Q.      | <0.9     |              |                                                  | ⊋         | 2     | 1      |
| Dec.56         C 0 05         C 0 05         ND         C 0 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                | 9            | <0.05        |                  | S          | <0.05        | Q                 | 6.0>         | 2       | <0.9     |              |                                                  | 2         | 2     | 1      |
| Mar-97         C0 05         C0 05 <t< td=""><td></td><td>9</td><td>&lt;0.05</td><td><del></del></td><td>2</td><td><b>0.0</b>5</td><td>2</td><td>&lt;0.9</td><td>S</td><td>6.0&gt;</td><td></td><td></td><td>ΩN</td><td>Q</td><td>2</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  | 9            | <0.05        | <del></del>      | 2          | <b>0.0</b> 5 | 2                 | <0.9         | S       | 6.0>     |              |                                                  | ΩN        | Q     | 2      |
| Oct-97         0.02         0.07         ND         0.04         ND         <0.43         ND         <1           Mar-98         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | i                                                | 7.           | <0.05        |                  | 9          | <b>40.05</b> | 2                 | 6·0>         | 2       | 6.0>     |              |                                                  | 2         | 2     | 2      |
| Mar-96         © 0.5         G 0.5         ND         < 0.9         ND         < 0.9           Oct-98         < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del></del>                                      | 7            | 0.02         | 0.07             | Q          | 0.04         | 9                 | <0.43        | Q       | ₽        |              |                                                  | QN        | S     | 2      |
| Oct-98                                                                                                                        <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del> </del>                                     | 18           | <0.05        |                  | QN         | <0.05        | Q                 | 6.0>         | QN      | 6.0>     |              |                                                  | 2         | 2     | 2      |
| Mar-99         <0.05         ND         <0.05         ND         <0.05         ND         <0.05         ND         <0.05         ND         <0.05         ND         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  | 8            | <0.05        | <u></u>          | 2          | <0.05        | Q                 | 6.0>         | QN      | <0.9     |              |                                                  | 2         | S     | 2      |
| Nov-99         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.05         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01 <t< td=""><td><del> </del></td><td>6</td><td>&lt;0.05</td><td></td><td>S.</td><td>&lt;0.05</td><td>Q</td><td></td><td>Q</td><td>2</td><td></td><td></td><td>Q</td><td>ç</td><td>2</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del> </del>                                     | 6            | <0.05        |                  | S.         | <0.05        | Q                 |              | Q       | 2        |              |                                                  | Q         | ç     | 2      |
| Apr-00         Replicate         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.03         < 0.03         < 0.11         < 1         < 1         < 1         < 0.11         < 0.01         < 0.01         < 0.05         < 0.05         < 0.03         < 0.03         < 0.03         < 0.03         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  | ව            | <0.05        | <u></u>          | <0.05      | <0.05        | 9 <sup>0</sup> 0> |              | \$      | \$       |              |                                                  | ۷         | <0.1  | Ŷ      |
| Apr-00         Replicate         < 0.04         < 0.05         < 0.03         < 0.09         < 1.1         < 1.1         < 0.1         < 0.1           Oct-00         < 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>;</b> -                                       | 0            | <b>₹0.05</b> | <del>}</del>     | <0.05      | <0.05        | ⊽                 | ₹            | \$      | <2       | <0.05        | <0.05                                            |           | <0.1  | Ą      |
| Oct-00         < 0.04         < 0.05         < 0.05         < 0.03         < 0.11         < 1         < 0.1         < 0.01           Apri-01         < 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MW-2S Apr-0                                      |              |              | بۇ               | <0.05      | <0.03        | <0.9              | <1.1         | ۲۷      | <1.1     | <0.1         | <0.1                                             |           | <0.05 | Ş      |
| Apr-01         Co.04         <0.05         <0.03          <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.02         <0.03          <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01 <td>MW-2S Oct-0</td> <td></td> <td></td> <td>ţ</td> <td>&lt;0.05</td> <td><b>60.03</b></td> <td>&lt;0.9</td> <td>&lt;1,1</td> <td>₽</td> <td>&lt;1.1</td> <td>&lt;0.1</td> <td>&lt;0.1</td> <td></td> <td>&lt;0.05</td> <td>ŝ</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MW-2S Oct-0                                      |              |              | ţ                | <0.05      | <b>60.03</b> | <0.9              | <1,1         | ₽       | <1.1     | <0.1         | <0.1                                             |           | <0.05 | ŝ      |
| Oct-01         < 0.054         < 0.054         < 0.055         < 0.03         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MW-2S Apr-0                                      |              | ^<br>₽       |                  | <0.05      | <0.03        |                   |              |         |          | ٥ <u>.</u> 1 | <0.1                                             |           | <0.05 | 1      |
| Mar-02         < 0.04         < 0.05         < 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  | Σ            | \$<br>20.0   |                  | <0.05      | <0.03        |                   |              |         |          | <0.1         | -0°1                                             |           | <0.05 |        |
| Sep-02         < 0.04         < 0.05         < 0.03            -0.1           Oct-91         0.68         < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  | 22           | ٥<br>9       |                  | <0.05      | <0.03        |                   |              |         |          | <0.1         | <0.1                                             |           | <0.05 | 1      |
| Oct-91         0.68         <0.5         ND         <0.5         5.7         240         5.2           Apr-93         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | 12           | \$<br>5      |                  | <0.05      | <0.03        | Ł                 | I            | 1       | 1        | 0.1          | <0.1                                             |           | <0.05 | :<br>ا |
| Apr-93         < 0.05         < 0.05         ND         < 0.05         0.7         88         2           Sep-93         0.26         1.4         ND         0.21         < 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  | <u></u>      | 0.68         | <0.5             | 2          |              | 5.7               | 240          | 5.2     | 900      |              |                                                  | 2         | 2     | 2      |
| Sep-93         0.26         1.4         ND         0.21         <0.6         110         2           Apr-95         <0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <del>}</del>                                     | 13           | <0.05        | ļ.               | Q          | <0.05        | 0.7               | 88           | 2       | 570      |              |                                                  | 2         | 2     | 2      |
| Apr-95         <0.25         0.45         ND         <0.25         <0.6         97         1.3           Oct-95         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ļ                                                | 33           | 0.26         |                  | 9          | 0.21         | <0.6              | 110          | 7       | 470      |              |                                                  | 2         | 2     | 2      |
| Oct-95         <0.05         <0.05         <0.05         ND         <0.05         0.6         5.1         1.1           Feb-96         0.11         0.23         ND         0.19         <0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del></del>                                      | 3            | <0.25        | -                | QN         | <0.25        | <0.6              | 26           | 1.3     | 370      |              |                                                  | 2         | 2     | 2      |
| Feb-96         0.11         0.23         ND         0.19         <0.6         54         1.2           May-96         <0.05         0.24         ND         0.15         0.7         47         1.5           Sep-96         <0.05         0.18         ND         0.1         <0.6         21         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <del></del>                                      | 5            | <0.05        | <del>,</del>     | 2          | <0.05        | 9.0               | 5.1          | 1.1     | 120      |              |                                                  | £         | 2     | Ş      |
| May-96         <0.05         0.24         ND         0.15         0.7         47         1.5           Sep-96         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | 96           | 0.11         | Li               | 2          |              | 9 <sup>-</sup> 0> | 54           | 1,2     | 200      |              |                                                  | 2         | 2     | 2      |
| Sep-96 <0.05 0.18 ND 0.1 <0.6 21   <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  | 98           | <0.05        | <u>.</u>         | Q          |              | 0.7               | 47           | 1.5     | 33       |              |                                                  | 2         | 2     | 2      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  | <b>36</b>    | <0.05        | <u></u>          | Q          |              | 9.0>              | 21           | ⊽       | 8        |              |                                                  | 2         | 2     | Ê      |

Page 2 of 14

Appendix B. Summary of COC analyses, Chevron Orlando, Florida

|                |                    | α-BHC              | B-BHC] y-B | 2           | 8-BHC    | Benzene   | Ethylbenzene | Toluene      | Xylenes | α-Chlordane  | Toluene Xylenes a Chlordane y Chlordane Chlordane | Chlordane | laga           | MTBE |
|----------------|--------------------|--------------------|------------|-------------|----------|-----------|--------------|--------------|---------|--------------|---------------------------------------------------|-----------|----------------|------|
| Well ID   Date | te Duplicate       | l/Brl              | l/6d       | μgγ         | l/Brl    | )6rl      | l/gu         | )<br>Bd      | ρg      | hg/l         | l'gu                                              | √бп       | <u>8</u>       | hд/  |
| MW-2D   Dec-96 | 96                 | <0.05              | <0.05      | QN          | <0.05    | 9.0>      | 39           |              | 5       |              |                                                   | 2         | 2              | 2    |
| MW-2D Mar-97   | -97                | ¢0.05              | <0.05      | ₽           | <0.05    | 40.6<br>€ | 24           | ⊽            | 49      |              |                                                   | ND        | 2              | 2    |
| MW-2D Oct-97   | -97                | 0.05               | 0.2        | Q           | <0.01    | <0.25     | 22.1         | م<br>م       | 29.5    |              |                                                   | Q         | 2              | 2    |
| MW-2D Mar-98   | -38                | 0.18               | 0.44       | 2           | <0.05    | ÷0.6      | 53.1         | ⊽            | 137     |              |                                                   | Ż         | 욷              | Q    |
| MW-2D Oct-98   | 98                 | 0.14               | <0.05      | S           | 0.12     | 900       | 35.6         | ⊽            | 639     |              |                                                   | ON        | S              | Q    |
| MW-2D   Oct-98 | -98 Duplicate      | 0.11               | <0.05      |             | 0.078    | <0.6      | 38.9         | V            | 71.2    |              |                                                   |           |                | . 3  |
| MW-2D   Mar-99 | <del> </del>       | 0.13               | 0.36       | QN          | 0.18     | <0.6      | 41           | <5           | 50      |              |                                                   |           | QN             | 9    |
| MW-2D Nov-99   | 66                 | 13                 | 0.4        | 13          | 0.05     | 9.0>      | 1            | \$           | 2       |              |                                                   | ۲,        | ÷0.            | - H  |
| MW-2D Apr-00   | -00                | T0.44              | 0.41       | <0.05       | <0.05    | ⊽         | 70           | \$           | 120     | <0.05        | <0.05                                             |           | -0<br>-        |      |
| MW-2D Apr-00   | -00 Replicate      | 6.0<br>8           | <0.05      | <0.05       | <0.03    | 6.0>      | 58           | ₽            | 93      | <0.1         | <0.1                                              |           | <0.05          | : 8  |
| MW-2D Oct-00   | ÷~~                | 0.62               | <0.05      | <0.05       | <0.03    | <0.9      | <1.1         | ₽            | حا:1    | <0.1         | <0.1                                              |           | <0.05<br>0.05  |      |
| MW-2D Apr-01   | -0-                | \$0.0 <del>4</del> | <0.05      | <0.05       | <0.03    |           |              |              |         | <0.1         | <0.1                                              |           | <0.05          |      |
| MW-2D Apr-01   | -01 Duplicate      | 8                  | <0.05      | <0.05       | <0.03    |           |              |              |         | <0.1         | <0.1                                              |           | 90°0>          |      |
| MW-2D Oct-0    | <del></del>        | \$<br>20.05        | <0.05      | 0.3         | <0.03    |           |              |              |         | <0.1         | <0.1                                              |           | <0.05          |      |
| MW-2D Oct-01   | -01 Duplicate      | <b>0.04</b>        | <0.05      | 0.28        | <0.03    |           |              |              |         | <0.1         | <0.1                                              |           | <0.05          |      |
| MW-2D Mar-02   | -02                | <0.04              | <0.05      | <0.05       | <0.03    |           |              |              |         | <0.1         | <0.1                                              |           | <0.05          |      |
| MW-2D Sep-02   | -02                | <0.04              | 0.32       | <0.05       | <0.03    |           | -            | 1            | 1       | <0.1         | <0.1                                              |           | 0.05<br>0.05   | : 1  |
| MW-3S Oct-91   | -91                | <0.15              |            | <0.15       | <0.15    | Ş         | 120          | Ą            | 930     |              |                                                   | - 1       | -8             | -ı   |
| MW-3S Sep-93   | -93                | 0.81               | 2.2        | <0.05       | 0.73     | 9.0>      | 99           | 1.2          | 190     |              |                                                   | 1         | 2.3            | 2    |
| MW-3S Sep      | Sep-93 Duplicate   |                    | 4          | <0.05       | 0.88     | 1.4       | 130          | ۷            | 650     |              |                                                   | I         | 2.7            | - 3  |
| -              | -95                | 0.58               | 2.2        | < 0.25      | 68.0     | <1.2      | 62           | 4            | 150     |              |                                                   | ∣ i       | 2.2            | 2    |
| MW-3S Apr      | Apr-95   Duplicate | 0.63               | 2          | <0.25       | <b>,</b> | 9.0>      | 2            | <b>-</b>     | 150     |              |                                                   | i         | 33             |      |
| MW-3S Oct-95   | <del> </del> -     | ļ                  | ٥.<br>م    | <u>6</u>    | 0.24     | 2.3       | 31           | ⊽            | 47      |              |                                                   | i         | <0.2           | i    |
| MW-3S Feb-96   | 96-                | 0.43               | 0.45       | <0.05       | 0.35     | 9.0>      | 14           | ۷            | 14      |              |                                                   | 2.9       | 0.5            | Q    |
| MW-3S   May-96 | 96-/               | 0.47               | 0.94       | <0.05       | 0.67     | \$.0°     | 22           | ₽            | 22      |              |                                                   |           | ç0.1           | - 1  |
| MW-3S May      | May-96 Duplicate   | 0.5                | 0.94       | <0.05       | 0.71     | 9.0>      | 23           | ₹            | 23      |              |                                                   | - 1       | ٥<br>1         | ŀ    |
| 7              | ·                  | 0.52               | <0.05      | <0.05       | 0.48     | 3.3       | 38           | 1.3          | 27      |              |                                                   |           | \$<br>0.1      | - 1  |
|                | Dec-96             | <0.25              |            | <0.25       | <0.25    | <0.6      | 21           | ⊽            | 72      |              |                                                   | ì         | <0.5           |      |
| MW-3S   Mar-97 | -97                | <0.25              | <0.25      | <0.25       | <0.25    | 0.9       | 28           | ⊽            | 8       |              |                                                   | - 1       | 0.5            | 2    |
| 1-1            | 1-97               | 0.8                | 6.0        | <0.01       | 9.0      | 0.57      | 11.6         | <b>6</b> .31 | 35.8    |              |                                                   | ķ         | 0.4            | ·    |
| MW-3S Oct      | Oct-97   Duplicate | 0.4                | 0.7        | <0.01       | 9.0      | 0.56      | 11.4         | <0.31        | 35.2    |              |                                                   |           | 0.9            | - }  |
| MW-3S Mai      | Mar-98             | 0.46               | 0.89       | 0.09        | 0.53     | 1.9       | 9.4          | ₹            | 49.3    |              |                                                   | <0.75     | 0.46           | S    |
| MW-3S Oct      | Oct-98             | 0.39               | 0.74       | \$          | 0.26     | 2.65      | 8.15         | ⊽            | 28.1    |              |                                                   | <0.23     | ^<br>20.0<br>2 | 2    |
| MW-3S Mai      | Mar-99             | 0.35               | 0.99       | <b>40.5</b> | 2.2      | 1.6       | 23           | \$           | 29      |              |                                                   | ⊽         | 23             | 2    |
| MW-3S Nov      | Nov-99             | 0.17               | 0.14       | <b>40.1</b> | <0.1     | 2.5       | 2            | \$           | 21      |              |                                                   | ٧         | <b>402</b>     | Ş    |
| MW-3S Apr      | Apr-00             | 0.35               | 0.68       | <0.05       | 0.19     | 2.2       | 11           | <5           | 14      | <0.05        | <0.05                                             |           | ç<br>0,1       | Ą    |
| MW-3S Oc       | Oct-00             | 0.37               | <0.05      | 0.17        |          | 6.0>      | 41           | ₽            | 120     | <0.1         | 0.1                                               |           | <0.05          | \$   |
| ,              | Apr-01             | 0.54               |            |             | <0.06    | <0.9      | 11           | ⊽            | =       | <0.2         | <0.2                                              | - X       | 2.6            | ا    |
| MW-3S Oct-0    | 101                | 0.55               | <0.05      | <u> </u>    | <0.03    | 1.4       | -            | <12          | 21      | <b>6</b> 0.1 | 0.1                                               |           | \$<br>60.05    | \$   |

Peage 3 of 14

Appendix B. Summary of COC analyses, Chevron Orlando, Florida

|        | אין אין אין   | lon lon            | Voil Pro     | _                |              |              | Emylipenzene<br>ud/l | noinelle<br>I'uu'i | Ayrenest | tig/l hg/                               | /bn         | l/bri    |                                                                      | , je                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------|---------------|--------------------|--------------|------------------|--------------|--------------|----------------------|--------------------|----------|-----------------------------------------|-------------|----------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mar M  | - Automoralic |                    | 1            | ~                | 200          | 0            | 43                   | <12                | 4.4      | 0.1                                     | -0°-1       | <b>X</b> | <0.05                                                                | <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mar-02 | Duolicate     |                    | -            | \$0.02<br>\$0.05 | ₹0.03<br>03  | 6.           | 4.8                  | <12                | 4.6      | 40.1                                    | <0.1        |          | <0.05                                                                | <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sep-02 |               | ÷                  |              | —                | 0.16         | 5.3          | 5.7                  | <12                | 1        | <0.1                                    | <0.1        |          | <0.05                                                                | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sep 02 | Duplicate     | 7                  | ~~           | +                | 0.13         | 5.7          | 4.4                  | <12                | 9.6      | <0.1                                    | <0.1        | -        | <0.05                                                                | ₩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Oct 91 |               | <0.25              |              | <del></del>      | <b>€0.05</b> | ŷ            | 96                   | 9                  | 1100     |                                         |             | 2        | 2                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sep-93 |               | <0.05              | <0.05        | -                | <0.05        | 9.0>         | 0.9                  | 2                  | 4        |                                         |             | Q        | 2                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Apr-95 |               | <0.05              |              | h                | <0.05        | 900          | 1.7                  | Q                  | 2.8      |                                         |             | 2        | 2                                                                    | ᢓ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Oct-95 |               | 0.05               | 0.07         | <del>,</del>     | 80.0         |              | 3.4                  | 2                  | 12       |                                         |             | 2        | 2                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Feb-96 |               | 90.0               | <0.05        | محميمية          | <0.05        | <0.6         | 2.1                  | Q                  | 4.8      |                                         |             | 2        | 2                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| May-96 |               | <0.05              | <0.05        | hame             | <0.05        | 9.0          | 2.8                  | QN                 | 2.9      |                                         |             | 2        | 2                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sep-96 |               | <0.05              | \$0.05       |                  | <0.05        | <0.6         | 8                    | 2                  | 32       |                                         |             | Q        | 2                                                                    | ş                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 96-09C |               | <0.05              | <0.05        | +                | <0.05        | \$0°         | 1.3                  | Q                  | 15       |                                         |             | 2        | 2                                                                    | ᄝ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Mar-97 |               | <0.05              | \$0.05       | <del>}</del>     | <0.05        | \$0°         | 6.0>                 | 9                  | <0.0>    |                                         |             | S        | 2                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Mar-97 | Duplicate     | <0.05              | <0.05        | —                | <0.05        | <0.6         | 6.0>                 |                    | 6.0>     |                                         |             |          |                                                                      | A CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF TH |
| Oct-97 |               | 0.00               | 1,0          |                  | <0.01        | <0.25        | 0.79                 | 2                  | 1.4      |                                         |             | Q        | 2                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Mar-98 |               | 0.07               | 900          | 2                | <0.05        | 9.0>         | <0.9                 | Q                  | -        |                                         |             | 呈        | 2                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Mar-98 | Duplicate     | 0.082              | 0.092        |                  | <0.05        | 9.0>         | <0.9                 |                    | €0.9     |                                         |             |          | Cook                                                                 | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SC1-98 |               | 0.14               | 0.19         | Q                | <0.05        | \$0.0¢       | 6.0>                 | Q                  | 0.0      |                                         | · · · · ·   | 2        | 2                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Mar-99 | -             | 0.13               | <b>^-</b> ~~ | 2                | 0.21         | <0.6         | ۲                    | Q                  | \$       |                                         |             | 2        | 2                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Nov-99 |               | 0.11               | ,            | <0.05            | <0.05        | -0.6<br>-0.6 | ٧                    | \$                 | <2       |                                         | <u> </u>    | ⊽        | 0                                                                    | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8-     |               | 0.46               |              | <0.25            | 0.47         | ₹            | ٠,                   | \$                 | 7        | <0.25                                   | <0.25       |          | 0.5                                                                  | <b>₩</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Oct-00 |               | 80.0               | 0.14         | <0.05            | <0.03        | 6.0>         | <1.1                 | 7                  | ₹        | <del>0</del> .1                         | <0.1        |          | \$0.0<br>\$0.0<br>\$0.0<br>\$0.0<br>\$0.0<br>\$0.0<br>\$0.0<br>\$0.0 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Apr-01 |               | 0.12               | ï            | <0.05            | <0.03        | ¢0.9         | <1.1                 | <b>₽</b>           | 4.1      | <u>0.1</u>                              | 0.1         |          | <0.05                                                                | ₹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 500    |               | 90.0               | <0.05        | <0.05            | <0.03        | <0.9         | 6·0>                 | <1.2               | <2.2     | ¢0.1                                    | ¢0.1        |          | \$0.05<br>\$                                                         | ٧                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Oct-01 | Duplicate     | 0.07               | <0.05        | <0.05            | <0.03        | ¢0.9         | <0.9                 | <1.2               | <2.2     | <0.1                                    | <b>~0.1</b> |          | ×0.05                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mar-02 | 4             | 0.04               | <0.05        | < 0.05           | <0.03        | <0.9         | <0.9                 | <1.2               | <2.2     | <0.1                                    | ÷0.1        |          | <b>₹</b> 0.0 <del>2</del>                                            | <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sep-02 | -             | \$0.0 <del>4</del> | 90.0         | <0.05            | <0.03        | ¢0,9         | 6.0>                 | <1.2               | -2.2     | Ç0.1                                    | Q.          |          | <del>0</del> 000                                                     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 00.91  |               | -3                 | 1.6          | <0.05            | 5.9          | <1.2         | <1.8                 | Ŋ                  | ×1.8     |                                         |             | 2        | 2                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Apr-93 |               | 4.5                |              | <0.05            | 5.8          | 2.7          | 15                   | -                  | 37       |                                         |             | 2        | 2                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sep-93 | 1             | 9.2                | 3.5          | <0.05            | 15           | 22           | 200                  | 6                  | 420      | 37                                      |             | 2        | 2                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6      |               | 13                 | 8.7          | ļ>               | 31           | 23           | 160                  | ⊽                  | ¥        |                                         |             | Q        | 2                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Oct-95 |               | 8.7                | 3.6          | <b>20.5</b>      | <0.5         | 5.3          | 5.6                  | ⊽                  | <0.9     |                                         |             | 2        | 2                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Feb-96 |               | 12                 | T            | <0.5             | 15           | 3            | 9.1                  | ⊽                  | 2.3      |                                         |             | 2        | S                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 96.    |               | 19                 | 11           | <0.05            | 26           | 9.6          | 28                   | ∇                  | 5.1      |                                         |             | 2        | 2                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sep-96 |               | 10                 | 10           | -                | 15           | 4.6          | 3.6                  | <u>ا</u>           | <0.0     |                                         |             | 2        | 2                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 960    |               | 17                 | 93           | <0.05            | <0.05        | 15           | 24                   | ₽                  | 1.3      |                                         |             | 2        | 2                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Mar-97 |               | 8.3                | <0.5         | <0.5             | 22           | 16           | 32                   | ⊽                  | <0.9     | 100000000000000000000000000000000000000 | _           | 2        | 2                                                                    | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Oct-97 |               | 70                 | 10           | -                | 40           | 13.5         | 25                   | 0.57               | 4        | 30                                      |             | 2        | 9                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Mar-98 |               | 40 S               | <0×          | <0.5             | <b>Q</b> 5   | 3.6          | 6.9                  | ∇                  | 6.0>     |                                         | (rade I     | 2        | 2                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Page 4 of 14

Appendix B. Summary of COC analyses, Chevron Orlando, Florida

|                | <u>.                                    </u> | g-BHC    | <u>а-</u> внс в-внс | FBHC         | HC S-BHC   | Benzene  | Ethylbenzene | Toluene  | Xylenes | x-Chlordane | Toluene   Xylenes   α-Chlordane   γ-Chlordane   Chlordane   DDD | Chlordane                               |            | MTBE |
|----------------|----------------------------------------------|----------|---------------------|--------------|------------|----------|--------------|----------|---------|-------------|-----------------------------------------------------------------|-----------------------------------------|------------|------|
| Well ID Date   |                                              | l/gri    | /bn                 | /bn          | lgu        | r<br>Pod | l/grl        | l/grl    | 6       | ľ6⊓         | ηď                                                              | μđη                                     | lgi.       | hg/  |
| MW-4S Mar-98   | 98 Duplicate                                 | ¥        | Ϋ́                  | ¥            | Α          | Α×       | ΝΑ           | ٧N       | ¥       |             |                                                                 |                                         | f          | 10.0 |
| MW-45   Oct-98 | γ                                            | 2        | 4                   | ⊽            | l          | 6.24     | 11.1         | ٧        | <0.9    |             |                                                                 | Q                                       | 2          | 2    |
| MW-45   Mar-99 | -96                                          | 12       | 7.6                 | <2.5         | ţ          | 22       | 68           | ςΣ       | 23      |             |                                                                 | S                                       | 2          | Ş    |
| MW-4S Nov-99   | - 66                                         | 6        | 2.7                 | ⊽            | ŀ          | 8.3      | 110          | <5       | 340     |             |                                                                 | <20<br>-                                | 7          | φ    |
| MW-45 Nov-99   | -99 Duplicate                                | 4.5      | 3.1                 | 60.0         | 5          | 8.7      | 120          | <5       | 360     |             |                                                                 | <u>,</u>                                | <0.1       | \$   |
| MW-45 Nov-99   | -99 Replicate                                | 43       | 2.1                 | <0.05        | ŧ          | 7.8      | 120          | 4.1      | 300     | <0.1        | <0.1                                                            |                                         | <0.05      | \$   |
| MW-45 Apr-00   | J                                            | 9.1      | 8.7                 | <0.5         | 24         | 14       | 25           | <5       | 25      | <0.5        | <0.5                                                            |                                         | ⊽          | \$   |
| MW-4S Apr-00   | 00 Replicate                                 | 9.7      | 7.5                 | <0.05        | ı          | 16       | 23           | ×10      | 13      | <0.1        | <0.1                                                            |                                         | <0.05      | 8    |
| <del>]</del>   |                                              | <u> </u> | -                   | <0.5         | :          | 11       | 29           | 1.       | 61      | ۷1          | -                                                               |                                         | <0.5       | Ą.   |
| MW-4S Oct-00   | 00 Duplicate                                 | ļ<br>-   | -                   | ¢0.5         | 1          | 11       | 29           | 1.2      | 62      | ₹           | ⊽                                                               |                                         | <0.5       | Ŷ    |
| MW-4S Oct-00   | <del>jaran</del>                             | 29       | 3.1                 | <b>20.</b> 2 | ı          | 10       | 27           | ₽        | 8       |             |                                                                 | <0.5                                    | <0.2       | ₹    |
| MW-4S Apr-01   | <del>1</del> ~~                              | 8.4      | 8.4                 | 4.           | 3          | 1,1      | 37           | 2.2      | 100     | <0.1        | <0.1                                                            |                                         | <0.05      | Ŷ    |
| سخ             | -01                                          | 3.1      | 9.5                 | <0.5         | )          |          |              |          |         | ⊽           | ٧.                                                              |                                         | <0.5       |      |
| MW-4S   Mar-02 | 02                                           | 3.3      | 5.5                 | <0.5         | ,          | 1.0      | 4.0          | <1.2     | 13      | ₽           | ₹                                                               |                                         | <0.5       | <5.0 |
| <del></del>    | -02                                          | 1.9      | 5.2                 | 0.5          | 1          | <0.9     | 6.0>         | <1.2     | <2.2    | -1>         | V                                                               |                                         | 0.5        | ď    |
| " 60           | -02 Duplicate                                | <b>.</b> | 6.5                 | 0.5          |            | <0.0>    | <0.9         | <1.2     | <22     | ₩-          | <del>-</del>                                                    |                                         | 0.5        | Ą    |
|                | ــــــ                                       | _        | 4.9                 | 2            |            | 17       | 360          | 10       | 1100    |             | p-aran.                                                         | Q                                       | <u>S</u>   | 2    |
| MW-4D Apr-93   | -93                                          | 5.7      | 2.4                 | 2            | ŀ          | 9        | 150          | 6.8      | 470     | *           |                                                                 | Q                                       | 2          | 2    |
| MW-4D Sep-93   | -93                                          | 5.3      | 3.5                 | QN           | ,          | 10       | 130          | 12       | 200     |             |                                                                 | Q                                       | 2          | g    |
| MW-4D Apr-95   | -95                                          | 4.5      | 3.5                 | 2            | : :        | 5.4      | 380          | 5.5      | 1100    |             |                                                                 | 2                                       | 2          | 2    |
| MW-4D Oct-95   | -95                                          | 2.8      | 5.6                 | 2            | ,          | 3.6      | 220          | 1.4      | 280     |             |                                                                 | 2                                       | 2          | 2    |
| MW-4D Feb-96   | 96-                                          | 1.3      | 1.1                 | S            | 2.9        | 3.3      | 170          | 13       | 98      |             |                                                                 | 2                                       | S          | 2    |
| MW-4D May-96   | 96-                                          | 2.5      | 4.1                 | 2            |            | 3.8      | 320          | 2.6      | 910     |             |                                                                 | 2                                       | 2          | 2    |
| MW-4D   Sep-96 | 96-                                          | 3.4      | 4.5                 | Q            | ı          | 4.6      | 260          | 2.2      | 740     |             |                                                                 | Q                                       | 2          | 2    |
| MW-4D Dec-96   | 96                                           | 6.2      | 4.7                 | QV           | 1 -        | 6.1      | 290          | 5.6      | 700     |             |                                                                 | ND                                      | 2          | 오    |
| MW-4D Mar-97   | -97                                          | 4,4      | <0.5                | £            | ,          | 80       | 240          | <10      | 630     |             |                                                                 | 2                                       | 2          | 2    |
| MW-4D Oct-97   | 76-                                          | 4        | 2                   | 2            | 1 :        | 3.6      | 98.2         | 1.1      | 304.8   |             | 1                                                               | 2                                       | 2          | ᄝ    |
| MW-4D Mar-98   | 86-                                          | ₽        | <del>0</del>        | 2            |            | 2.4      | 117          | 9.1>     | 223.9   |             |                                                                 | 2                                       | 2          | 2    |
| MW-4D Oct-98   | -98                                          | 3.1      | 3.6                 | £            |            | <0.6     | 123          | 1.94     | 341.3   |             |                                                                 | 9                                       | 2          | 2    |
| MW-4D Mar-99   | 66-                                          | 4.       | 3.1                 | 2            |            | 17       | 220          | σ        | 220     |             | -                                                               | Q                                       | 2          | 2    |
| MW-4D Nov-99   | -99                                          | 8.4      | -                   | <0.3         | ,          | 2.9      | 2            | ₩.       | 7       | 1           | ~ I== 3                                                         | V2                                      | 0.5        | Ŷ    |
| MW-4D Apr-00   | 8                                            | 3.3      | 2.9                 | <0.05        | L .i       | 13       | 250          | ŞŞ<br>ŞŞ | 620     | <0.05       | <0.05                                                           |                                         | <u></u>    | {    |
| <del>}</del>   | -00 Duplicate                                | 3.6      | 3.4                 | 0.05         | i <u> </u> | 10       | 230          | 11       | 260     | <0.05       | <0.05                                                           |                                         | <u></u>    |      |
| MW-4D Apr-00   | -00 Replicate                                | 3.9      | <0.05               | <0.05        | <u>'</u>   | 12       | 210          | <10      | 480     | <b>0.1</b>  | ₽.                                                              |                                         | 0.<br>0.05 |      |
| ┼              |                                              | 4.4      | 33                  | <0.5         |            | 19       | 230          | 2        | 620     | ⊽           | V                                                               | erica : activa : economical e           | 9          | ç    |
| MW-4D Apr-01   | - <del>0</del> -                             | 4.3      | 3.3                 | <0.05        | لسبا       | 13       | 230          | 13       | 290     | ٥<br>1      | 0.1                                                             | 1                                       | 0.05       | _1   |
| MW-4D Oct-01   | 5                                            | ٠.       | 3.6                 | <0.5         |            |          |              |          |         | ⊽           | ∇                                                               |                                         | 0.5        | _ĺ   |
| MW-4D Mar-02   | -02                                          | 3.0      | <0.5                | <0.5         | 7.4        | 13       | 130          | 7.8      | 280     | ⊽           | V                                                               |                                         | Ç.         | ×10  |
| MW-4D Sep-02   | -02                                          | 2.2      | 2.2                 | 0.5          |            | 14       | 120          | 9        | 330     | -           | -                                                               | *************************************** | 0.5        |      |
| 1              |                                              |          | İ                   | - Commercial |            |          |              | ļ        |         |             |                                                                 |                                         |            |      |

3/20/03

Page 5 of 14

Appendix B. Summary of COC analyses, Chevron Orlando, Florida

|                |               | a-BHC              | a-BHC[β-BHC]γ-BI                       | 오     | 8-BHC | Benzene           | Ethylbenzene | Toluene  | Xylenes      | oluene Xylenes a-Chlordane y-Chlordane Chlordane | γ-Chlordane  | Chlordane | 1000              | MTBE     |
|----------------|---------------|--------------------|----------------------------------------|-------|-------|-------------------|--------------|----------|--------------|--------------------------------------------------|--------------|-----------|-------------------|----------|
| Well ID Date   | e Duplicate   | 707                | 767                                    | l/gu  | /bri  | l/gu              | l/grl        | )6rl     | lgu          | l'gri                                            | l/gri        | l/gri     | l/Bri             | <u>P</u> |
| MW-5S Sep-93   | <u></u>       | £                  | S                                      | Q     | 9     | 2                 | QN           | S        | £            |                                                  |              | QN        | Q                 | 2        |
| MW-55 Apr-95   | 35            | 9                  | 2                                      | ş     | 2     | ON .              | QN           | 2        | 2            |                                                  |              | QN        | 2                 | 9        |
| <del></del>    | 35            | 2                  | Q                                      | Q     | Q     | S                 | 9            | 2        | 2            |                                                  |              | QN        | Q                 | 2        |
| MW-5S   Feb-96 | 96            | S                  | 2                                      | 2     | CN    | 2                 | QN           | 2        | 2            |                                                  |              | Q         | 2                 | 2        |
| MW-55 May-96   | 96            | QN                 | 2                                      | 2     | 9     | QN                | S            | 2        | 2            |                                                  |              | QN        | 2                 | 2        |
| +              | 96            | Q                  | 2                                      | S     | S     | 2                 | Q            | 2        | 2            |                                                  |              | QN        | S                 | ND       |
| <del> </del>   | 96            | 2                  | 2                                      | 2     | 2     | Q                 | QN           | 2        | Q            |                                                  |              | QN        | ON                | Q        |
| MW-5S Mar-97   | 97            | Q                  | 2                                      | 2     | 2     | 2                 | QN           | 2        | 운            |                                                  |              | ON        | QN                | Q        |
| MW-5S Oct-97   | 26            | 2                  | Q                                      | 2     | S     | QN                | Q            | S        | Q            |                                                  |              | QN        | g                 | Q        |
| MW-5S Mar-98   | 86            | Q                  | 2                                      | S     | 2     | 2                 | QN           | Q        | S            |                                                  |              | 2         | QN                | N        |
| ╁╌             | 66            | 2                  | 2                                      | Q     | QN    | QN                | QN           | Q        | 2            |                                                  |              | QN        | Ð                 | Ð        |
| MW-55 Nov-99   | 66            | <0.05              | <0.05                                  | <0.05 | <0.05 | 9.0>              | ×            | ₹        | ♡            |                                                  |              | ۲         | <0.1              | Ŷ        |
| <del>}</del>   | 00            | <0.05              | <0.05                                  | <0.05 | 40.05 |                   | -V           | Ş        | ₹            | <0.05                                            | <0.05        |           | 1.0≻              | \$       |
| MW-5S Apr-00   | 00 Replicate  | 20.05              | <del>,</del>                           | <0.05 | <0.03 | <0.9              | <1.1         | √        | 4.1          | <0.1                                             | <0.1         |           | <b>0.0</b>        | Ŝ.       |
|                | 8             | \$0.0 <del>4</del> | <del></del> -                          | <0.05 | <0.03 | <0.9              | <1.1         | ⊽        | -4.1<br>-4.1 | <0.1                                             | <0.1         |           | ဂ<br>လ            | ç        |
| ╂━             | 8             | <u>0.0</u>         | <0.05                                  | <0.05 | <0.03 |                   |              |          |              | <0.1                                             | <0.1         |           | <0.05             |          |
| ļ              | 10            | \$<br>8            | <0.05                                  | <0.05 | <0.03 | <br>              |              |          |              | <0.1                                             | <0.1         |           | <0.05             |          |
| MW-5S Mar-02   | 02            | \$0.0<br>40.0      |                                        |       | <0.03 |                   |              |          |              | <0.1                                             | <0.1         |           | <0.05             |          |
| MW-5S Sep-02   | 22            | <b>\$</b>          | <0.05                                  | <0.05 | <0.03 | ı                 | 1            | 1        | ı            | <del>0</del> .                                   | -0.1         |           | <0.05             | :        |
| MW-5D Sep-93   | 93            | <0.05              | <0.05                                  | Q     | <0.05 | 9.0×              | 6.0>         | <u>۲</u> | 6.0>         |                                                  |              | Q         | 2                 | 윺        |
| MW-5D Apr-95   | 95            | <0.05              | 0.15                                   | Q     | 0.08  | 9.0               | 6.0>         | ⊽        | 13           |                                                  |              | 2         | 2                 | £        |
|                | 95            | <0.05              |                                        | ND    | <0.05 | 9.0×              | 6.0>         | V        | 60>          |                                                  |              | 2         | 2                 | 2        |
| MW-5D Feb-96   | 96            | <0.05              |                                        | QN    | <0.05 | 9.0>              | <0.9         | ⊽        | 600          |                                                  |              | 2         | 2                 | 2        |
|                | 96            | <0.05              | <0.05                                  | Q     | <0.05 | 9 <sup>7</sup> 0> | <0.9         | ⊽        | <0.9         |                                                  |              | 2         | 2                 | 2        |
| MW-5D Sep-96   | 96            | <0.05              | ļ                                      | 2     | <0.05 | <0.6              | 6.0>         | ⊽        | <0.9         |                                                  |              | Q         | 2                 | Q        |
| MW-5D Dec-96   | 96            | <0.05              | 0.11                                   | QN    | <0.05 | 9.0>              | 6.0>         | ⊽        | 6.0>         |                                                  |              | 2         | 2                 | 2        |
| MW-5D Mar-97   | 97            | <0.05              | ۲,                                     | Q     | <0.05 | 9.0>              | 2            | 5        | <0.9         |                                                  |              | S         | 2                 | 2        |
| MW-5D Oct-97   | 97            | 0.02               | 0.2                                    | Q     | 0.05  | 0.3               | 21           | 0.43     | 95.8         |                                                  |              | Q         | 2                 | 9        |
| MW-5D   Mar-98 | 98            | 0.05               | 0.19                                   | 욷     | <0.05 | <0.6              | 31.4         | ⊽        | 145          |                                                  |              | 9         | 2                 | 2        |
| MW-5D   Mar-99 | 66            | <0.3               | 0.16                                   | Q     | 0.23  | 9.0>              | 5            | Ş        | 13           |                                                  |              | Q         | 2                 | 2        |
| MW-5D Mar-99   | -99 Duplicate | <0.3               | 0.16                                   |       |       | <0.6              | 2            | ç        | 13           |                                                  |              |           |                   |          |
| MW-5D Nov-99   | 66            | <0.05              | _                                      | <0.05 |       | <0.6              | ⊽            | Ą        | 7            |                                                  |              | 7         | ç<br>Ç            | \$       |
| WW-5D Nov-99   | 99 Duplicate  | <0.05              | بـــــــــــــــــــــــــــــــــــــ | <0.05 |       | <0.6              | ⊽            | \$       | 7            |                                                  |              | 7         | 0<br>V            | \$       |
| MW-5D Nov-99   | -99 Replicate | <u> </u>           | <0.05                                  | <0.05 |       | <0.9              | <1.1         | ⊽        | 7.           | <b>-0.1</b>                                      | 0.1          |           | <0.05             | ٧        |
| MW-5D Apr-00   | ***           | 0.11               | 0.22                                   | ₹     |       | ⊽                 | ۲۷           | \$       | 38           | <0.05                                            | <0.05        |           | ₽.                | ₩        |
| MW-5D Apr-00   | 00 Replicate  | \$<br>\$           | <0.05                                  | 8     |       | 6.0>              | 17           | ⊽        | 35           | <0.1                                             | ç0<br>-      | 1         | <0.05             | Ŷ        |
| MW-5D Oct-00   |               | <u>\$</u>          | <0.05                                  | <0.05 | <0.03 | <0.9              | <1.1         | ⊽        | 7.           | <b>c</b> 0.1                                     | <b>.</b> 0.1 |           | <del>0</del> 0.05 | ŝ        |
| MW-5D Oct-00   | 00 Duplicate  |                    | <u>ا</u>                               | 8     |       | 6.0×              | <1.1         | √        | 7            | <0.1                                             | 0.1          |           | <b>0.0</b> 2      | ç        |
| MW-5D Oct-00   |               | < 0.02             | <0.02                                  | <0.02 | 4     | ⊽                 | ٧            | ⊽        | 0            |                                                  |              | <0.05     | <b>₹0.0</b> 2     | v        |
|                |               |                    |                                        |       |       |                   |              |          |              |                                                  |              |           |                   |          |

3720,03

Appendix B. Summary of COC analyses, Chevron Orlando, Florida

| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ON                                                                                    |               | ON ON ON ON ON ON ON ON ON ON ON ON ON O                                        |                                             | N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | >0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,12  | 3.4                                                                                      |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>╶┈╎╴┆╴┆╸┧╸┠╴╎┸</u> ┞┈┼ <del>╸</del> ┟┈┼┈┼┈╏                                        |               | ON ON ON ON ON ON ON ON ON ON ON ON ON O                                        |                                             | ON ON ON ON ON ON ON ON ON ON ON ON ON O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.12  | 9.2<br>9.2<br>9.2<br>9.2<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75 | <del>╶┋╸┊╶╡┈┧┈┆┈┆┈┆╸┩┈╎</del> ┄╎ <del>┈╎╸┥╸┩╸╋╍┡╍┡╸┥╸╏</del> ╌╬╌                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>╶╶╎╶╎╶╎╶┧╸╂╴╎┈╀╸┞╼</u> ┞╸┾╼╞╸┾╼┼╌╎ <del>┈┢╸╎╸┣╸╎╶</del> ┞┈┼╾╏                      |               | ON ON ON ON ON ON ON ON ON ON ON ON ON O                                        |                                             | ON ON ON ON ON ON ON ON ON ON ON ON ON O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50.0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.12  | 9.2<br>4.1<br>4.0<br>4.75<br>4.75<br>4.75<br>MD ND ND ND ND ND ND ND ND ND ND ND ND ND   | <del>╶┋╶┧</del> ╌ <del>╽┈┋╸╎┈</del> ┊╴ <del>╏╸╎</del> ╌╎╌ <del>╎╸</del> ┋╼ <del>┋╸</del> ╏╼╊═╋═╂═╏╌ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <del>▕▗▕▗▗</del> ░ <del>▗▗</del> ░▄ <del>▕</del> ▄▕▘▞▀▞▄░▄▞▄▞▄▞▄▍▃░▄ <del>▐</del> ▄░▄ |               | ON ON ON ON ON ON ON ON ON ON ON ON ON O                                        |                                             | N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.12  | 9.2<br><1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1                                            | <del>╻╡╸</del> ┧ <del>╻</del> ┋┄┊╼┊╾┋╴╃┈┊╌┆╌┆╼╅╼┩╼┠┯╬╾┩╾╂┈┊╌                                        | ON CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF |
| ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                       |               | ON ON ON ON ON ON ON ON ON ON ON ON ON O                                        | P P P P P P P P P P P P P P P P P P P       | ON ON ON ON ON ON ON ON ON ON ON ON ON O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.12  | 0.75<br>0.75<br>0.75<br>0.05<br>0.75<br>0.05<br>0.05<br>0.05                             | <del>╺╶┧╼┋┈┋═╠═┋╸┋┈┆</del> ╌╟╌┼╾ <del>╡╼┋═┋┉╏╍┩╸</del> ╏┈┞╌                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <del>┊</del> <del>╸</del> ┋┈┩╸╏╶┊┷╏╌╟╼┋╸╁╍╞╍╞╍╎╌╎╼ <b>┋╌</b> ╱╾ <b>┠╸┼╌╎╌┼╸┼╸</b> ╏   |               | ADA AD B CO B CO B CO B CO B CO B CO B CO B C                                   | P P P P P P P P P P P P P P P P P P P       | ON NO NO NO NO NO NO NO NO NO NO NO NO N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.12  | 0.75<br>0.75<br>0.75<br>0.00<br>0.75<br>0.00<br>0.00<br>0.00                             | <del>▃▕▃░▄░▄░▗▋</del> ┈╬┈╬╌ <del>┆╸</del> ┆╼ <del>┋╺</del> ╏┉╠╾┥╾╏╴╠╴                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.05 ND 0.05 ND 0.05 ND 0.05 ND 0.05 ND 0.05 ND 0.05 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.06 ND 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del>┊╸┫╸╎┈┞╸╟╸╟╸╟╸╟╸╟╸</del> ╏                                                       |               | ND ND ND ND ND ND ND ND ND ND ND ND ND N                                        |                                             | N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.12  | 0.75<br>ON<br>ON<br>ON<br>ON<br>ON<br>ON<br>ON<br>ON<br>ON<br>ON<br>ON<br>ON<br>ON       | <del>┈┋═╞╸┋╸┫╸╎</del> ╌╎╌┼╾ <del>╡╺┩╼╏╍╏╸</del> ┼╴                                                  | N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND <0.05 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del>┇╸╏╶╎╸╏╸╏╸╏╸╏╸╏╸</del> ┦╸┦╸╏╸╋╸┦╸┣╸┼╸╏╶╬╸┦╸╏                                     |               | ON ON ON ON ON ON ON ON ON ON ON ON ON O                                        | 99777999999999999999999999999999999999      | ND ND ND ND ND ND ND ND ND ND ND ND ND N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.12  |                                                                                          | <del>╼╎╼┋╸┩┈╎</del> ╌╎╌┼╼╅╼┩╼ <b>╿╌╟┈</b>                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND <0.05<br>0.05<br>ND <0.05<br>ND <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del>▐▗▝</del> ▞▃ <del>▗</del> ▃▗▃▗▃▗▃▗▃▗▃▗▃▗▃▗▃▗▃▗▃▗▃▗▃▗▃▗▃▗▃▗▃▗                     |               | AC CO S CO S CO S CO S CO S CO S CO S CO                                        | 9 & ∆ 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ND ND (22 2.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.12  |                                                                                          | <del>╼┋╶┩┈┆┈╎┈╎╼╡╼┩╼┩╍┡╍┡</del> ┯ <del>╏</del> ┯╏                                                   | ON ON ON ON ON ON ON ON ON ON ON ON ON O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| O05 <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <005<br>ND <0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <del>┊</del> ┻ <del>╇</del>                                                           | <u> </u>      | 40.9<br>40.9<br>40.9<br>40.9<br>40.9<br>40.9<br>40.9<br>40.9                    | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$            | 22<br>40.9<br>60.9<br>60.9<br>24<br>24<br>1.2<br>1.2<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.12  |                                                                                          | ╼ <b>╶┩╌</b> ╬╌╬╌┼╼┽╼┩╼ <b>╟┉┞╌┥╌</b> ┞┈                                                            | NO NO NO NO NO NO NO NO NO NO NO NO NO N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND                                                                                                                                                                                                                                                                                                                                               | <del>┡╌╎╌┋╌┊╍╞╸┊╍╎╌╎╌┋╸</del> ╬                                                       |               | 40.9<br>40.9<br>40.9<br>40.9<br>40.9<br>40.9<br>40.9                            |                                             | 4.8<br>6.09<br>6.09<br>6.09<br>6.09<br>7.1<br>7.1<br>7.1<br>1.2<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                          | <del>┈╎</del> ╌╎╌┼╼ <del>┊╺</del> ┩╼ <b>╟┉┞╼┤╌</b> ╏┈╎╌                                             | NO NO ON ON ON ON ON ON ON ON ON ON ON O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND                                                                                                                                                                                                                                                                                                                                               | <u>                                     </u>                                          |               | 0.9<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09                             |                                             | <ul> <li>&lt;2.2</li> <li>&lt;0.9</li> <li>&lt;0.9</li> <li>&lt;0.9</li> <li>&lt;0.9</li> <li>&lt;0.9</li> <li>&lt;0.9</li> <li>&lt;0.9</li> <li>&lt;0.1</li> <li>&lt;0.1</li> <li>&lt;0.0</li> <li< td=""><td></td><td></td><td></td><td><del></del></td><td>ON ON ON ON ON ON ON ON ON ON ON ON ON O</td></li<></ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                          | <del></del>                                                                                         | ON ON ON ON ON ON ON ON ON ON ON ON ON O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                       |               | 60.9<br>60.9<br>60.9<br>60.9<br>60.9<br>60.9                                    |                                             | 0.09<br>0.09<br>0.09<br>0.09<br>1.7<br>1.7<br>1.7<br>1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                          | <u>╶╎╼</u> ┧╼┦╼┃ <del>┈</del> ┞┯                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND                                                                                                                                                                                                                                                                                                                                               | <u> </u>                                                                              |               | 40.9<br>40.9<br>40.9<br>40.9<br>40.9                                            |                                             | 0.9<br>0.9<br>24<br>5.1<br>1.2<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                          |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND                                                                                                                                                                                                                                                                                                                                               |                                                                                       |               | 40.9<br>40.9<br>40.9<br>40.9<br>40.9                                            | 2 2 2 2 2 2 <del>2</del>                    | 24<br>24<br>5.1<br>1.2<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                          | <b>_}_ </b> _                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND                                                                                                                                                                                                                                                                                                                                               | <u> </u>                                                                              |               | 40.9<br>40.9<br>40.9<br>40.9                                                    |                                             | 4.8<br>24<br>2.1<br>1.2<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                          | <b>_}</b>                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND                                                                                                                                                                                                                                                                                                                                               | <u>                                     </u>                                          | 99999         | <ul> <li>40.9</li> <li>40.9</li> <li>1.1</li> <li>40.9</li> <li>40.9</li> </ul> |                                             | 60.9<br>24<br>1.2<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | GN CN                                                                                    |                                                                                                     | ON ON C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.    | <u>                                     </u>                                          | 2222          | <0.9<br><0.9<br>1.1<br><0.9                                                     |                                             | 24<br>5.1<br>1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | to the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |       |                                                                                          |                                                                                                     | 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05 <0.05<br><0.05<br><0.05<br><0.05 <0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05                                                                                                                                                                                                                                                                                                                                                                       | <u>                                     </u>                                          | 22 22         | <0.9<br><0.9                                                                    |                                             | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 2                                                                                        | <u> </u>                                                                                            | Q C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br>ND <0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0. | <u> </u>                                                                              | 2 2 2         | 1.1<br><0.9                                                                     | Q Q                                         | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     | 2                                                                                        |                                                                                                     | CZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                       | 25            | 6.05                                                                            | Q.                                          | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     | 2                                                                                        |                                                                                                     | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND <0.05<br>ND 0.04<br>ND 0.04<br>ND <0.03<br><0.05 <0.05<br><0.05 br><0.05 <0.05<br><0.05 <0.05<br><0.05<br><0.05 <0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       | 22            | - 0 U>                                                                          | Q                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                          | 4                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.09<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | إسترساب                                                                               | UN.           | ,<br>,                                                                          |                                             | €.0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 2                                                                                        |                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 40.05<br>40.05<br>40.05<br>40.05<br>40.05<br>40.05<br>40.05<br>40.05<br>40.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | إستنسار                                                                               |               | <0.43                                                                           | 9                                           | ₹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Q                                                                                        | 2                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 40.05<br>40.05<br>40.05<br>40.05<br>40.05<br>40.05<br>40.05<br>40.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | إستبسا                                                                                | 9             | <0.9                                                                            | Q                                           | 6.0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 2                                                                                        | -                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.05<br>0.61<br>0.61<br>0.05<br>0.05<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | إسبا                                                                                  | }<br><b>}</b> | ⊽                                                                               | S                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Q                                                                                        |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.61<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | l                                                                                     | V             | <b>\</b>                                                                        | <5                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.05 |                                                                                          |                                                                                                     | ۍ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.61<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ····                                                                                  |               | <1.1                                                                            | ⊽                                           | -<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                          |                                                                                                     | დ¦                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.61<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                     | _             | <0.9                                                                            | ×1.2                                        | <b>~</b> 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | -                                                                                        |                                                                                                     | 0.5<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.05<br>0.05<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |               | 2000                                                                            | 9.5                                         | 2900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | j                                                                                        | - 1                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul><li>0.05</li><li>0.05</li><li>0.05</li><li>0.05</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                       | L.            | 83                                                                              | ⊽                                           | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | j                                                                                        |                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.05<br>0.05<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05 <0.05                                                                           | 9.0>          | 17                                                                              | ⊽                                           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ŀ                                                                                        | - 1                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul><li>0.05</li><li>0.05</li><li>0.05</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ĺ                                                                                     | <u>_</u>      | 90                                                                              | 1.7                                         | 490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | į                                                                                        | - 1                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <0.05<br><0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>                                                                              | <u> </u>      | 90                                                                              | 1.5                                         | 710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | i                                                                                        | - 1                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       | <u>.</u>      | 6.0>                                                                            | ⊽                                           | £                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,     | ·                                                                                        | ô.<br>1                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       | ļ<br>         | 8.5                                                                             | ⊽                                           | ଛ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | į                                                                                        | Ţ.<br>V.                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <0.05   <0.05   <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | حد ث                                                                                  | L.            | 17                                                                              | ⊽                                           | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | i                                                                                        | <b>₽</b>                                                                                            | <del>2</del> ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.03 0.04 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.03 0.02                                                                             | ļ             | 6.6                                                                             | <0.31                                       | 9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                          | 00<br>00<br>00                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <0.05   <0.05   <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       |               | 1.3                                                                             | ⊽                                           | 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | <0.75                                                                                    | ¥0.04                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.04 <0.05                                                                           | 5 <0.6        | 6.0>                                                                            | ⊽                                           | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | - 1                                                                                      | 8<br>8                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.02   <0.05   <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                       |               | -                                                                               | \$                                          | ₹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                          | 9                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Appendix B. Summary of COC analyses, Chevron Orlando, Florida

|              |          | ľ           | α-BHC                 | 3-ВНС  | 7-8H         | C S-BHC                                      | Benzene     | Ethylbenzene | Toluene   | Xylenes          | α-Chlordane | Coluene Xylenes α-Chlordane γ-Chlordane Chlordane | Chlordane | 000              | MTBE     |
|--------------|----------|-------------|-----------------------|--------|--------------|----------------------------------------------|-------------|--------------|-----------|------------------|-------------|---------------------------------------------------|-----------|------------------|----------|
| Well ID      | Date Du  | Duplicate   | 1/6/1                 | ng/    | l/gr         |                                              | hg/         | µg∕l         | l/Brl     | rg4              | )<br>Di     | ľgu                                               | 'n        | 5                | ng/      |
| N S8-MM      | Nov-99   |             | <0.05                 | <0.05  | <0.05        | v                                            | <0.6        | <b>/</b>     | \$        | ₽                |             |                                                   | ٧         | <b>-0.1</b>      | \$       |
| MW-8S A      | Apr-00   |             | 0.09                  | <0.05  | <0.05        |                                              | ⊽           | +            | Ŷ         | 14               | <0.05       | <0.05                                             |           | 0.1              | ∜        |
| MW-8S O      | 00-t-00  | }<br>}<br>! | <0.04                 | 0.22   | 90.0         | <0.03                                        | - 6.0>      | 9.7          | V         | 22               | <0.1        | <0.1                                              |           | <0.05            | \$       |
| MW-85 A      | Apr-01   |             | 0.04<br>0.04          | <0.05  |              | 0.03<br>0.03                                 | <0.9        | <1.1         | ⊽         | 4.1              | <0.1        | <0.1                                              |           | <0.05            | ç>       |
| MW-8S O      | Oct-01   |             | \$0.05                | 0.29   | <0.05        |                                              |             |              |           |                  | ć0.1        | 0.1                                               |           | <0.05            |          |
| MW-8S M      | Mar-02   |             | <b>60.0</b> 4         | <0.05  |              |                                              |             |              |           |                  | <0.1        | <b>~0</b> .1                                      |           | <0.05            |          |
| MW-8S Se     | 9p-02    |             | <b>60,0</b> 5         | <0.05  |              | <0.03                                        | 1           | <br>         | ŀ         | 1                | <0.1        | <0.1                                              |           | <0.05            | ı        |
| WW-8D Se     | Sep-93   |             | <0.05                 | <0.05  | 9            | <0.05                                        | ÷0.6        | 26           | ۷.        | 87               |             |                                                   | QN        | <0.1             | 2        |
| MW-8D A      | Apr-95   |             | 0.16                  | <0.05  | Q            | <0.05                                        | 2.3         | 21           | ٧٠        | 79               |             |                                                   | Q         | 0.12             | 2        |
| MW-8D O      | Oct-95   |             | 90.0                  | \$0.05 | S            | <0.05                                        | 9.0>        | 20           | ⊽         | 15               |             | : NS) - NS - CAG-14                               | Q         | <0.1             | £        |
| MW-8D F      | Feb-96   | (           | <0.05                 | <0.05  | Q            | <0.05                                        | 9.0         | 6.1          | V         | 85               |             |                                                   | QZ        | ç<br>0,          | Ş        |
|              | May-96   |             | 90.0                  | 900    | Q            | <0.05                                        | 9.0         | 7            | 1.2       | 120              | ļ           | <u> </u><br>                                      | 2         | \$<br>0,0        | 2        |
| MW-8D M      | d-m-m    | Duplicate   | 90.0                  | 0.06   |              | <0.05                                        | 9.0≥        | 6.1          | 1.1       | 120              |             |                                                   |           | ٥.1<br>د         |          |
| S CB-WW      | Sep-96   |             | 90.0                  | 0.05   | 2            | <0.05                                        | 40.6        | 1.8          | V         | 23               |             |                                                   | QN        | <0.1             | Q        |
| MW-8D D      | Dec-96   | -           | <0.05                 | <0.05  | _            | <0.05                                        | 6.0         | 6.7          | 1.3       | 89               |             |                                                   | QN.       | 0.1              | 9        |
| MW-8D M      | Mar-97   |             | <0.05                 | <0.05  | S            | <0.05                                        | 900         | 4.5          | 1.3       | 3                |             |                                                   | 2         | <del>0</del>     | 2        |
| O G8-MM      | Oct-97   |             | 0.2                   | 8      | <del>,</del> | 0.02                                         | 0.58        | 3.8          | 0.81      | 40.3             |             |                                                   | QN        | 0.05             | 2        |
| M C8-MM      | Mar-98   |             | 0.36                  | <0.05  | Q            | <0.05                                        | 0.77        | 4.3          | \v        | 16.8             |             | · abad -<                                         | Q         | 0.055            | 9        |
| MW-8D O      | Oct-98   |             | 0.41                  | 0.05   | QN           | 0.087                                        | 9.0         | 11.5         | ٧         | 29.24            |             |                                                   | 2         | \$0.0 <b>4</b>   | Q        |
| MW-8D M      | Mar-99   |             | 0.19                  | 0.08   | S            | 0.1                                          | 9.0≻        | 4            | \$        | 7                |             |                                                   | QN        | <0.1             | 물        |
| MW-8D N      | Nov-99   |             | 0.05                  | 90.0   | <0.05        |                                              | 9.0>        | ₽            | \$        | ል                |             |                                                   | ۲         | ٥٠<br>د0.1       | Ą        |
|              | Apr-00   |             | 0.15                  | 0.07   |              | <0.05                                        | V           | 6            | <b>\$</b> | 3.3              | <0.05       | <0.05                                             |           | 0.11             | \$       |
| MW-8D O      | Oct -00  |             | <b>4</b> 0.0 <b>4</b> | <0.05  | Ŷ            |                                              | 6.<br>0.    | <1.1         | ۲         | <1.1             | <0.1        | <0.1                                              |           | <0.05            | ç        |
| MW-8D A      | Apr-01   | i<br> <br>  | <0.04                 | <0.05  | Q-           | -                                            | <0.9        | <1.1         | ₽         | Ţ.<br>V          | <0.1        | <0.1                                              |           | <0.05            | Ş        |
| O G8-WM      | Ost-01   |             | \$<br>6.04            | <0.05  | <0.05        | -                                            |             |              |           |                  | <0.1        | ٠ <u>0</u> .1                                     |           | <0.05            |          |
| MW-8D M      | Mar-02   |             | <0.04                 | <0.05  | Ö            |                                              |             |              |           |                  | <0.1        | <b>0.1</b>                                        |           | <b>©</b><br>0.05 | 1        |
| MW-8D S      | Sep-02   |             | 0.04<br>0.04          | <0.05  | ç            | ٠,                                           | 1           | 1            | I         | ı                | <0.1        | <b>~0.1</b>                                       |           | <0.05            | 1        |
|              | Sep-93   |             | 0.25                  | 0.32   | <0.05        |                                              | 2.2         | 2            | <1        | 7.4              |             |                                                   | 2         | E)               | <b>ئ</b> |
|              | Apr-95   |             | 0.21                  | 0.74   | _<br>0.95    |                                              | 2.9         | 1.7          | ⊽         | 2.8              |             |                                                   | 2         | 0.71             | 8        |
| <u> </u>     | <u> </u> | Duplicate   | 0.24                  | 0.78   |              | 0.33                                         | 2.6         | 3.6          | 4         | <0.9             |             |                                                   |           | 0.55             | ₽        |
| O G6-MM      | Oct-95   |             | 0.27                  | 1.3    | <0.05        | L                                            | <0.6        | <0.9         | ⊽         | <0.9             |             |                                                   | Q         | 0.87             | Ą.       |
| MW-9D F      | Feb-96   |             | 0.31                  | 1.5    | 0.05         |                                              | 1.9         | 2.8          | ⊽         | 6.0 <sub>2</sub> |             |                                                   | S         | -                | 3.9      |
| MW-9D M      | May-96   | <br>        | 0.57                  | 3.1    | 0.05         | 1.2                                          | 2.2         | 2.6          | ⊽         | ¢0.9             |             |                                                   | 2         | <0.1             | ç,       |
| MW-9D        | Sep-96   |             | 0.46                  | 3.6    | <0.05        | <u> </u>                                     | 0.8         | 1.1          | ⊽         | <0.9             |             |                                                   | 2         | <del>0</del>     | ស        |
| C   Q6-MM    | Dec-96   |             | 0.63                  | 3.5    | <0.05        |                                              | <b>1</b> .1 | e.0>         | ⊽         | <0.9             |             |                                                   | S         | <b>₹0.1</b>      | 5.9      |
| Q GG-MM      |          | Duplicate   | 0.68                  | 3.9    | <0.05        |                                              | 1.1         | <0.9         | ⊽         | <0.9             |             |                                                   |           | <u>8</u>         | Ŷ        |
| <del> </del> | Mar-97   |             | <0.5                  | 2.9    | <0.5         | <u>                                     </u> | 9.0         | <0.9         | ₹         | 6.0>             |             |                                                   | 2         | ∇<br>-           | ٧        |
| سيا          | I        | Duplicate   | <0.5                  | 5.3    | _<br>0.5     | <0.5                                         | 9.0         | 6.0>         | ⊽         | ÷0.9             |             |                                                   |           | ⊽                | \$       |
| MW-9D C      | Oct-97   |             | 6.0                   | က      | <0.05        |                                              | 0.47        | <0.43        | ٥<br>33   | 99.0             |             |                                                   | Q         | 0.2              | 4.6      |

Page 9 of 14

3420403

|                         | —~              | ا<br>ا<br>ا | - 3    | - 1    |      |           | 1 2   | ₽     |               |                | 0.5           |        |              |                       |        |        | - 1        | 2            | - 1    | - 1          | - 1    | - :                                       | 2      | - 1       | 욷      | . !    | ļ                |        | Ę       | i          | - (    | - }       | * (    | !      | - 1    | 9         | 20            | 11     | 7 5             | ۵      |
|-------------------------|-----------------|-------------|--------|--------|------|-----------|-------|-------|---------------|----------------|---------------|--------|--------------|-----------------------|--------|--------|------------|--------------|--------|--------------|--------|-------------------------------------------|--------|-----------|--------|--------|------------------|--------|---------|------------|--------|-----------|--------|--------|--------|-----------|---------------|--------|-----------------|--------|
|                         | Š,              | 0.18        | 0.21   | 0.121  | <0.5 | 2.1       | 0.54  | <0.05 | <b>~0.0</b> 5 | 0.73           | <b>₹0.0</b> 2 | 0.37   | Ç<br> <br> - | 7                     | ⊽      | 7      | <b>⊽</b> { | <del>0</del> | 0      | <del>-</del> | V      | 0<br>1                                    | Q 5    | Q.3       | 0.73   | 7      | 7                | Ÿ      | <0.05   | 0.05       | <1.25  | <1.25     | ⊽      | 0.5    | g      |           | 2             | 2      | 2               | N N    |
| aue                     |                 | QN          |        |        |      |           |       |       |               | 1              | 1             | ŀ      | Ļ            | - 1                   | - 8    |        | Ę          |              | į      | ŀ            |        |                                           | ş      | ٠ }       | <0.23  |        |                  |        |         |            |        |           |        |        | 2      |           | 2             | 2      | 2               | AL .   |
| Chlordane               | /g/             |             |        |        |      | 0.1       | <0.25 | <0.1  | <0.1          | <b>40.1</b>    | <b>~0.1</b>   | Q.1    |              |                       |        |        |            |              | 3      |              |        |                                           |        |           |        |        |                  | ۷.     | <0.1    | 2.7        | <2.5   | <2.5      | 4      | 1      |        |           |               | ;      |                 |        |
| α-Chlordane γ-Chlordane | V <sub>GD</sub> |             |        |        |      | 40.1      | <0.25 | <0.1  | £0,1          | <0.1           | <b>-</b> 0.1  | <0.1   |              |                       |        |        |            |              |        |              |        |                                           |        |           |        |        |                  | ⊽      | <0.1    | .0.<br>1.0 | <2.5   | 2.5       | 42     | -      |        |           | 2             |        |                 |        |
| 6                       | ľgi             | <0.9        | <0.9   | <2     | 2    | ×1.1      | 4     |       | <1.1          | 422            | <2.2          | <2.2   | 2            | Q                     | 2      | UN     | -          | ND           | 2      | 2            | 2      | 9                                         | S S    |           | 2      | Q      | \<br>\<br>\<br>\ | \$     | 7.7     | <1.1       | 42     | <22       | <22    | <22    |        | 8.6       | 5.8           | 21     | 60              | 6.0    |
| 0                       | lgi             | V           | ⊽      | \$     | \$   | ⊽         | .5    | ∇     | ∇             | 4.2            | <1.2          | <12    | 2            | 2                     | Q      | 2      |            | Q            | Q      | 2            | 9      | S                                         | 2      |           | 2      | 2      | \$               | \$     | V       | V          | <1.2   | <1.2      | <12    | <1.2   | S      |           | Ž             | 2      | 2               |        |
| hylbenzene              | l/grl           | <0.9        | 40.9   | √      | ×    | <1.1      | V     | <1.1  | 41.1          | <0.9           | 6.0>          | 6.0>   | g            | 2                     | QN     | QN     |            | S            | 2      | 9            | QN     | QN                                        | QN     |           | 2      | S      | V                | <br>   | <1.1    | ۲.         | <0.9   | <0.9      | 6.0>   | 6.0>   | 1.4    | 1.9       | 1.5           | 1.1    | 6.0>            | <0.9   |
| Benzene                 | hgd.            | 0.0         | 190    | 9.0>   | 9.0> | 6.0       | ₹     | 6.0>  | 6.0>          | 60>            | 6.0>          | 6.05   | 9.0          | 8.8                   | 3.2    | 2.6    | 2.7        | 3.9          | 4.7    | 3.8          | 2.2    | 3.4                                       |        | 1.1       | 2.69   | 1.4    | 1.3              | ₹      | 6.0>    | 6.05       | 6.0>   | 6.0>      | 6.05   | 6.0>   | 2.4    | 2.7       | 20            | 4.7    | 2               | 2      |
| 8-BHC                   | , de            | 9.0         | 0.81   | 0.57   | 0.31 | \$0 U3    | 0.67  | 8.0   | 0.2           | 0.82           | 0.29          | ÷0.03  | 37           | 16                    | 12     | 5      | 9          | 16           | 4.     | 6.3          | 12     | က                                         | 9.9    | 6.5       | 6      | 6      | 47               | 4.7    | 6.4     | 6.5        | -61    | 19        | 8.7    | 59     | 12     | 12        | 0.59          | 0.07   | 0.11            | 0.05   |
| y-BHC 3                 | No.             | 0.019       | \$0.0v | <0.1   | V 0  | 0.62      | <0.25 | <0.05 | <0.05         | <0.05          | <0.05         | 0.81   | 12           | 16                    | 96.0   | 3.4    | 1.4        | 9.9          | <3.8   | 3.4          | 3.7    | 0.5                                       |        | -         | 23     | 80     | ₹                | 18     | -       | 2.1        | <1.25  | <1.25     | V      | 0.28   |        | -         | 0.87          | <0.05  | 0.09            | <0.05  |
| -BHCj)                  |                 | 33          | 7-     | Ţ      | Τ    | ر آ       |       | 0.31  | 7             | 1              | 1             | ŧ.     | 2            | 47                    | 28     | 1      | 10         | 1            | ×15    | 23           | l      | ĺ                                         | ١_     | ŀ         | i      | 73     | ]                | 1      | ŀ       | ŀ          | 1      | 8         | ì      | 1      |        | 9         | 4.6           | •      | 12              | 1.27   |
| &-BHC B-BHC             | Ton             | 0.47        | 12     | 0.4    | 0.28 | 0.25      | 0.56  | 0 08  | 40.05         | 900            | 90.0          | 800    | 2            | 3.6                   | 2.6    | 4      | 2          | 6.8          | 42     | 4.7          | 57     | 80                                        | 22     | 19        | 3.5    | 27     | _                | 24     | 8       | 9          | 1.8    | 91        | 0.91   | 0.59   | -      | 1.2       | 0.55          | <0.05  | 0.15            | <0.05  |
|                         | Duplicate       |             |        |        |      | Renlicate | 2000  | -     |               |                | -             |        |              | <del> </del><br> <br> |        |        | Duplicate  |              |        |              |        | A-10-10-10-10-10-10-10-10-10-10-10-10-10- |        | Dunlicate | i<br>k |        |                  |        |         | -          |        | Duplicate |        |        |        | Duplicate | <del></del> . |        |                 |        |
|                         | Date 1          | ·           | Oct-98 | Mar-99 | 00   |           | 4     | 38    | Apr-04        | 0              | Mar-02        | Sep-02 | Sep-93       | Apr. 95               | Oct-95 | Feb-96 | ٠          | de-          | Sep-96 | Dec-96       | Mar-97 | 76-97                                     | Mar-98 | Mar-98    | Oct-98 | Mar-99 | No.              | Anr-00 | 00-t-00 | Apr-01     | Oct 01 | 0         | Mar 02 | Sen 02 | Sep-93 | Sep-93    | Apr-95        | Oct-95 | Feb-96          | May-96 |
|                         | Well ID         | t           | +      |        | Π.   |           | 1     | 7     | Ť.            | <del>;</del> - | <del></del>   | •      | 7            |                       | +      |        | 7          | -}           |        |              | -      | $\overline{}$                             |        |           |        |        |                  |        |         |            | +      | ٠,        | MW-10S |        | ~~~    |           |               |        | MW-10D   Feb-96 | MW-10D |

Page 10 of 14

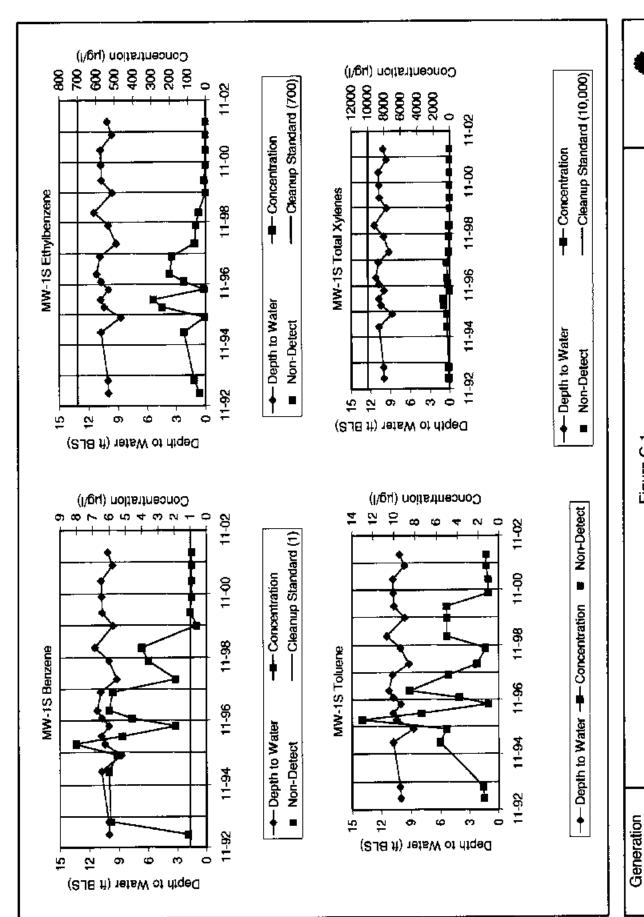
Appendix B. Summary of COC analyses, Chevron Orlando, Florida

|           |          | ľ         | a-BHCj B-BHC   | 8-BHC | IY-BHC  | 8-BHC/E  | Benzene | Ethylbenzene | Toluene |       | a-Chlordane | Xylenes α-Chlordane γ-Chlordane Chlordane | Chlordane | laga             | MTBE |
|-----------|----------|-----------|----------------|-------|---------|----------|---------|--------------|---------|-------|-------------|-------------------------------------------|-----------|------------------|------|
| Well ID   | Date D   | Duplicate | /bri           | /bid  | )<br>Di | <u>Ş</u> | ğ       | /gri         | ,<br>61 |       | /birl       | /6rl                                      | l/grl     | ğ                | /br  |
| MW-10D S  | Sep-96   | -         | 0.05           | }     | 0.05    | 0.05     | 2.5     | <0.9         | Q       | <0.0  |             |                                           | QN        | Q                | 81   |
| MW-10D D  | Dec-96   | Ì         | <0.05          | <0.05 | <0.05   | <0.05    | 4.6     | 6.0>         | 2       | <0.9  |             |                                           | Q         | 2                | 160  |
| MW-10D N  | Mar-97   |           | Lancare        | in    | <0.05   | <0.05    | 2.5     | 6.0>         | QN      | 6.0>  |             |                                           | QN        | Q                | 120  |
| MW-10D    | Oct-97   |           | <0.01          | ٠.    | <0.01   | 0.02     | 5.1     | <0.43        | Q       | ⊽     |             |                                           | ON        | 9                | 298  |
| MW-10D N  | Mar-98   |           | <0.05          | 0.19  | 0.015   | <0.05    | 3       | 6.0>         | Q       | <0.9  |             |                                           | QN        | QN               | 246  |
| MW-10D C  | Oct-98   |           | 0.065          | 9.0   | 980.0   | 980.0    | 5.56    | 6.0>         | 2       | 60>   |             |                                           | Q         | 2                | 289  |
| MW-10D N  | Mar-99   |           | <b>c</b> 0.3   | 0.12  | <0.3    | <0.3     | 5.4     | 4            | 2       | ٧     |             |                                           |           | N                | 210  |
| MW-10D N  | Nov-99   |           | <0.05          | 0.63  | <0.05   | <0.05    | 9.0>    | ⊽            | \$      | 2     |             |                                           | ļ         | <0.1             | Ą    |
| MW-10D A  | Apr-00   |           | ¢0.05          | <0.05 | <0.05   | <0.05    | 2.7     |              | \$      | ♡     | <0.05       | <0.05                                     |           | <del>0</del> 0.1 | 120  |
| MW-10D    | Oct-00   |           | ô.<br><b>2</b> | 0.84  | <0.05   | 0.07     | <0.9    | <b>~1.</b> 1 | V       | <11   | <0.1        | -0·1                                      |           | <0.05            | 17   |
| MW-10D /  | Apr-01   |           | <del></del>    | 0.19  | <0.05   | <0.03    | 1.6     | <1.1         | V       | -1.1v | <0.1        | -0°.1                                     |           | <0.05            | 37   |
| MW-10D    | Oct-01   |           | 0<br>20<br>20  | <0.05 | <0.05   | <0.03    | <0.9    | <0.9         | <12     | <2.2  | <0.1        | Ç                                         |           | <0.05            | <5   |
| MW-10D N  | Mar-02   |           | 6.0<br>20.02   | 0.15  | <0.05   | <0.03    | <0.9    | <0.0>        | <1.2    | 22    | .0.1        | ç0.1                                      |           | <0.05            | <5.0 |
| MW-10D &  | Mar-02 D | Duplicate | 20.02          | i .   | <0.05   | <0.03    | <0.9    | 6.0>         | <1.2    | 422   | <0.1        | 1.0>                                      |           | <0.05            | <5.0 |
| MW-10D S  | Sep-02   | -         | <b>∆</b> 0.04  | 0.05  | <0.05   | <0.03    | 6.0     | 6.0>         | <1.2    | 42    | <0.1        | <0.1                                      |           | <0.05            | \$   |
| MW-11 S   | Sep-93   |           | Q              | 2     | 2       | 9        | S       | Q            | £       | 2     |             | -                                         | Q         | QN               | S    |
| MW-11     | Apr-95   |           | 2              | 1     | S       | 9        | 8       | QN.          | 2       | E E   |             |                                           | ON        | Q                | D    |
| MW-11     | Oct-95   |           | QN             | [     | Q       | 2        | S       | Q            | 2       | 2     |             |                                           | ON        | QN               | 9    |
| 1         | Feb-96   |           | 2              | Q     | ð       | 2        | ND      | QN           | Q       | 2     |             |                                           | S         | QN               | £    |
| MW-11 N   | May-96   |           | 2              | l _ i | 2       | 9        | 웃       | QN           | QN      | ON    |             |                                           | Q         | QN               | 2    |
| MW-11 S   | 3ep-96   |           | 2              | Q     | Q       | 2        | 2       | 2            | £       | Q     |             |                                           | Q         | 2                | 2    |
| MW-11     | Dec-96   |           | 2              | Q     | S       | Q        | Ñ       | CN           | Q       | Q     |             |                                           | 2         | 2                | 2    |
| MW-11 N   | Mar-97   |           | 2              | S     | 2       | 2        | Q       | 2            | 2       | 2     |             |                                           | Q         | 2                | 身    |
| MW-11     | Oct-97   |           | 2              | 2     | 2       | 2        | £       | 2            | 2       | 2     |             |                                           | Q         | 2                | S    |
| MW-11 N   | Mar-98   | -         | QN             |       | S       | 2        | Q       | 9            | 2       | 2     |             |                                           | QN        | 2                | 2    |
| MW-11 N   | Mar-99   |           | Ş              | S     | 2       | 2        | 2       | 2            | 2       | 2     |             | - two                                     | ON        | Q                | 2    |
| MW-11 /   | Apr-00   |           | <0.05          | <0.05 | <0.05   | <0.05    | V       | ⊽            | \$      | ₹     | <0.05       | <0.05                                     |           | <0.1             | \$   |
| MW-11 [ I | Mar-02   |           | 0.05<br>20.02  | <0.05 | <0.05   | <0.03    |         |              |         |       | <0.1        | <0.1                                      |           | <0.05            |      |
| MW-12   5 | Sep-93   |           | Q              | QN    | QN      | £        | Q       | Q            | 2       | QN    |             |                                           | Q         | 0.               | 2    |
| MW-12   S |          | Duplicate |                |       |         |          |         |              |         |       |             |                                           | ,         | 0                | Ī    |
| MW-12 /   | Apr-95   |           | 2              | QN    | Q       | 2        | Q       | QN           | 일       | 2     |             |                                           | 2         | 0.               | 2    |
| MW-12     | 001-95   |           | 2              | ₽     | £       | 욷        | 2       | 2            | 2       | 2     |             |                                           | S         | 0.1              | 2    |
| MW-12     | Feb-96   |           | S              | Q     | Q       | S        | S       | 2            | Q       | 2     |             |                                           | 2         | <b>0.1</b>       | 2    |
| MW-12     | May-96   |           | 2              | 2     | Q       | 2        | 2       | QN           | 2       | ⊋     |             |                                           | Q         | ٥<br>د           | 2    |
| MW-12     | Sep-96   |           | 2              | QN    | 2       | 2        | QN      | 2            | Q       | 2     |             |                                           | 2         | 0<br>1           | 2    |
| MW-12     | Dec-96   |           | 2              | 2     | Q       | 2        | QN      | QN           | 9       | 2     |             |                                           | 2         | \$<br>0.1        | 2    |
| MW-12     | Mar-97   |           | Ş              | Q     | QN      | Q        | S       | QN           | 2       | 2     |             |                                           | Q         | 0                | ᄝ    |
| MW-12     | Oct-97   |           | S              | Q     | 9       | Q        | 2       | Q            | 2       | 2     |             |                                           | 2         | 9                | 2    |
| MW-12     | Mar-98   |           | 2              | S     | Q       | QN       | 2       | 2            | Q       | 2     |             |                                           | 2         | 0.03             | Q    |

|         |                |                                         | &-BHC          | α-BHCjβ-BHC{γ-B | E<br>E        | S-BHC | Benzene       | Ethylbenzene | Toluene     | Xylenes  | x-Chlordane | α-Chlordane γ-Chlordane Chlordane      | Chlordane                               | ggg          | MTBE      |
|---------|----------------|-----------------------------------------|----------------|-----------------|---------------|-------|---------------|--------------|-------------|----------|-------------|----------------------------------------|-----------------------------------------|--------------|-----------|
| Well ID | Date           | Ouplicate                               | l/grl          | hg/             |               | l/grl | Гgц           | hg/l         | - logu      | - For    | √grd        | hg/l                                   | l/grl                                   | /6n          | l/g       |
| MW-12   | Oct 98         |                                         |                | Q               |               | QN    | QN            | 2            | 9           | 2        | 1000        |                                        | 2                                       | <u>\$</u>    | 2         |
| MW-12   | Mar-99         |                                         | Q              | 2               |               | 2     | 2             | QN           | 2           | 웆        |             |                                        | Q                                       | <0.1         | Q         |
| MW-12   | Nov-99         |                                         | <0.05          | <0.05           |               | <0.05 | 9.0>          | <b>-</b> 1   | \$          | ۵        |             |                                        | ₽                                       | <0.1         | ŝ         |
| MW-12   | Apr-00         |                                         | <0.05          | <0.05           | <b></b>       | 0.1   | ⊽             | ۷            | Ş           | ۵        | <0.05       | <0.05                                  |                                         | 0.11         | ري<br>دي  |
| MW-12   | Oct-00         |                                         | ×0.04          | <0.05           | leave-        | <0.03 | 6.0>          | <1.1         | ⊽           | 4.1      | <b>0.1</b>  | <0.1                                   |                                         | <0.05        | <b>\$</b> |
| MW-12   | Oct-00         | Duplicate                               | <b>\$0.0</b> 7 | <0.05           | ķ             | <0.03 | 6.0>          | <1,1         | \<br>\<br>\ | 7.1      | <0.1        | ×0.1                                   |                                         | <0.05        | ŝ         |
| MW-12   | Oct-00         | Replicate                               | <0.02          | <0.02           | }             | <0.02 | ⊽             | Þ            | \<br>\<br>\ | 8        |             |                                        | <0.05                                   | <0.02        | ٧         |
| MW-12   | Apr-01         |                                         | <0.04          | <0.05           |               | <0.03 |               |              |             | <u> </u> | <0.1        | ₽.0                                    |                                         | <0.05        |           |
| MW-12   | Mar-02         |                                         | <0.04          | <0.05           | <0.05         | <0.03 |               |              |             |          | <0.1        | <0.1                                   |                                         | <0.05        |           |
| MW-15   | Feb-96         |                                         | 2              | Q               | 2             | S     | Q             | QN           | Q           | 2        |             |                                        | 9                                       | Q            | Q         |
| MW-15   | May-96         |                                         | 2              | 2               | QN            | Q     | 9             | ON           | Q           | 2        |             |                                        | 2                                       | Q            | Q         |
| MW-15   | Sep-96         |                                         | QN             | QN              | QN            | ND    | Q             | QN           | Q           | S        |             |                                        | Q                                       | QN           | QN        |
| MW-15   | Dec-96         |                                         | 2              | 2               | Q             | ð     | 9             | Q            | ð           | 2        |             |                                        | S                                       | Q            | Q         |
| MW-15   | Mar-97         |                                         | 2              | Q               | Ş             | 2     | Q             | Q            | Q           | 2        |             |                                        | Q                                       | QN           | ΩŽ        |
| MW-15   | Oct-97         |                                         | 2              | S               | Q             | Q     | Q             | ON           | QN.         | Q.       |             |                                        | Q                                       | N            | 2         |
| MW-15   | Mar-98         |                                         | Q              | QN              | Q             | Q     | Q             | QN           | 2           | S        |             | anha-l                                 | Q                                       | Q            | Q         |
| MW-15   | Oct-98         |                                         | g              | QN              | Q             | 2     | Q             | QN           | 2           | Ð        |             | use                                    | Q                                       | Q            | Q         |
| MW-15   | Mar-99         |                                         | Q              | Q               | Q             | 2     | 2             | QN           | Q           | S        |             |                                        | Q                                       | Q            | Q         |
| MW-15   | Nov-99         |                                         | <0.05          | _               | <0.05         | <0.05 | <0.6          | ₹            | ∜           | ∀        |             |                                        | ⊽                                       | <0.1         | Š.        |
| MW-15   | Apr-00         |                                         | <0.05          | <0.05           | <0.05         | <0.05 | V             | ₹            | Ş           | ♡        | <0.05       | <0.05                                  |                                         | 0            | ·5        |
| MW-15   | Oct-00         | :                                       | <0.04          | L               | <0.05         | <0.03 | 6.0>          | <1.1         | ⊽           | <1.1     | <0.1        | <0.1                                   |                                         | <0.05        | °5        |
| MW-15   | Apr-01         |                                         | <0.04          | <0.05           | <0.05         | <0.03 | <0.9          | <1.1         | ⊽           | <1.1     | <0.1        | <b>-0.1</b>                            |                                         | <0.05        | Ŷ         |
| MW-15   | Oct-01         |                                         | 0.07           | <0.05           | <0.05         | <0.03 | <0.9          | 6.0>         | <1.2        | <2.2     | <0.1        | <0.1                                   |                                         | ٥.<br>ک      | ç         |
| 91-WW   | Mar-02         |                                         | <b>0.04</b>    | <0.05           | <0.05         | <0.03 | <0.9          | 6.0>         | <1.2        | <2.2     | 0.1         | <0.1                                   |                                         | <0.05        | <5.0      |
| MW-15   | Mar-02         | Duplicate                               | 6<br>8         | r:              | <b>⇔</b> 0.05 | <0.03 | <0.9          | 6.0>         | <1.2        | <2.2     | <0.1        | <0.1                                   |                                         | <0.05        | <5.0      |
| MW-15   | Sep-02         |                                         | <0.04          | <0.05           | <0.05         | <0.03 | <0.9          | <0.9         | <1.2        | <2.2     | .0.<br>1.1  | <0.1                                   |                                         | 0.0<br>0.0   | <5.0      |
| MW-16S  | 0ct-97         |                                         | 5              |                 | £.            | œ     | 2.4           | <0.43        | 9           | 71       |             |                                        | Q                                       | <b>O</b> 3   | <0.63     |
| MW-16S  | <del>} )</del> |                                         | 0.8<br>2       | - I             | 0.88          | 2.1   | <0 <u>.</u> 6 | <0.9         | 2           | <0.9     |             |                                        | 2                                       | <del>0</del> | Ŷ         |
| MW-16S  | Oct-98         |                                         | _              | 8.3             | 1.3           | 2.8   | <0.6          | <0.9         | 2           | 6.0°     | ļ           |                                        | 2                                       | \$0.0°       | \$        |
| MW-16S  |                |                                         | 4.1            | · · · )         | 2.8           | 6.3   | 2.2           | ⊽            | S           | 7        |             |                                        | 2                                       | ⊽            | ণ         |
| MW-16S  | : Nov-99       | adan v                                  | <0.05          | 3.2             | <0.05         | 0.49  | 9.0>          | ٧,           | \$          | 7        |             |                                        | ⊽                                       | 0            | Ą         |
| MW-16S  | ·              | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1.9            | 17              | 1.9           | 4.4   | ⊽             | ⊽            | \$          | ♡        | <0.25       | <0.25                                  |                                         | <0.5         | ⊹         |
| MW-16S  | Oct-00         |                                         | 8.9            |                 | 7.8           | 13    | 2             | <1.1         | v           | <1.1     | <0.1        | <0.1                                   |                                         | <0.05        | Ŝ.        |
| MW-16S  | -              |                                         | 1.8            | 27              | 1.1           | 8.5   | 60>           | <1.1         | ⊽           | 4.1      | <0.1        | 3.3                                    |                                         | <0.05        | Ş         |
| MW-16S  | -              | Duplicate                               | -              |                 | Ţ             | 7.7   | 0.0≎          | <1.1         | ⊽           | √<br>1.1 | -0`-        | 2.9                                    |                                         | <0.05        | 5         |
| MW-16S  | 3 Oct-01       |                                         | 60             | 8.3             | 9.0           | 2     |               |              |             |          | ⊽           | ∇                                      |                                         | <0.5         |           |
| MW-16S  | ) Oct-01       | Duplicate                               | 60             |                 | 9.0           | 2     |               |              | }<br>       | 1        | ٧.          | 1× × × × × × × × × × × × × × × × × × × | *************************************** | 0.5          | I<br>I    |
| MW-16S  | 3 Mar-02       |                                         | 0.83           | . !             | 0.58          | 2.2   | 6 O>          | 6'0>         | <1.2        | 22       | ٧           | ⊽                                      |                                         | <0.5         | <5.0      |
| MW-16S  | Sep-02         |                                         | 0.77           | 4.8             | 0.51          | 1.3   | 0.0<br>0.0    | <0.9         | 4.2         | 2.2      |             | -                                      |                                         | 0.5          | \$        |

| WW-18D OL-59         Log of section         pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1 pgf 1                                        | ļ             |                | α-ВНС[β-ВНС  | B-BHC       | 1-8HC | 1CIS-BHCI    | Benzenej E     | Ethylbenzene | Toluene | Xylenes      | α-Chlordane | Toluene Xylenes α-Chlordane γ-Chlordane Chlordane DDD | Chlordane                               | aga      | MTBE |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|--------------|-------------|-------|--------------|----------------|--------------|---------|--------------|-------------|-------------------------------------------------------|-----------------------------------------|----------|------|
| Oct-97         1         1         0         6         6         6.4         0.66         ND         <1           Marriell         4.5         2.1         4.6         8.3         6.5         4.0         ND         24.0           Oct-98         4.5         2.1         4.6         8.3         8.0         1.4         ND         24.0           Marriell         1.9         1.5         1.2         6.5         8         <1         ND         24.0           Marriell         Orbital         4.1         6.6         1.2         6.7         2.2         <1         4.0           Apr-01         0.74         0.74         0.6         0.73         3.2         <1         <1         6.7         2.2         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1         <1 <t< td=""><td></td><th></th><td></td><td>/gr</td><td>lg.</td><td>l/gri</td><td>hg/l</td><td>l'gu</td><td>-F6-</td><td>l/gr</td><td>l/gri</td><td>hgy</td><td>l/gri</td><td>l/gr</td><td>hg/l</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |              | /gr         | lg.   | l/gri        | hg/l           | l'gu         | -F6-    | l/gr         | l/gri       | hgy                                                   | l/gri                                   | l/gr     | hg/l |
| Mar-96         5.2         17         5.6         8.3         5.5         <0.9         ND         <0.6           Mar-96         145         17         5.6         8         <1         ND         2.44           Mar-96         1.6         1.7         1.2         6.5         8         <1         ND         2.44           Mos-96         0.7         4.1         6.65         1.1         5.7         2         <1         <2           Apr-00         0.7         4.1         6.7         2.2         <1         <2         <2           Apr-10         0.7         4.1         6.7         2.2         <1         <2         <2           Apr-10         0.7         4.1         6.6         4.1         4.2         6.63         3.7         <1         <2         <2           Apr-10         0.7         4.2         6.0         3.2         4.1         4.2         6.0         4.2         4.1         4.2         4.1         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | -              |              | 10          | 0.5   | 5            | 5.4            | 0.55         | 2       | ⊽            |             |                                                       | QN                                      | 0.3      | 40.6 |
| Oct-90         45         21         45         83         802         141         ND         244           Mar-39         Duplicale         16         13         11         57         8         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                | 5.2          | 17          | 5.6   | 8.3          | 5.5            | 6.0>         | 2       | <0.9         |             |                                                       | QN                                      | <0.01    | 43.9 |
| Mar-199   Mar-199   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   Land   L |               |                | 4.5          | 21          | 4.5   | 8.3          | 8.02           | 1.41         | S       | 2.44         |             |                                                       | 2                                       | ⊽        | 46.5 |
| Mar-96   Duplicate         16         13         11         57         8         <1         <2           Nov-29         0.74         4.4         0.63         1.1         5.7         2.2         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                | 1.9          | 15          | 1.2   | 6.5          | æ              | V            | 2       | \$           |             |                                                       | Q                                       | ٧        | 46   |
| Nov-99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -             | ·              | 1.6          | 13          |       | 1            | 8              | ٧            |         | ۵            |             |                                                       |                                         | ⊽        | 45   |
| Apr-00         074         44         063         11         32         <1         <5         <2         <075           Oct-00         0740         031         406         603         37         <11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                | <0.5         | 4 1         | <0.5  |              | 2.2            | <b>1</b>     | \$      | ٧            |             |                                                       | o1>                                     | ⊽        | 48   |
| Oct-00         <0.04i         0.31         <0.05         <0.03         3.7         <1.1         <1.1         <0.1           Oct-01         0.08i         1.2         0.02         3.3         <1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <del></del>   |                | 0.74         | 44          | 0.63  | 1            | 3.2            | ٧            | \$      | 8            | <0.25       | <0.25                                                 | *************************************** | <0.5     | 43   |
| Apr-01         <004         18         <005         029         33         <11         <11         <01           Oct-01         0.26         1.7         3.9         3.3         <11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -             |                | <0.04        | 0.31        | <0.05 | '            | 3.7            | <1.1         | ₽       | 7            | <0.1        | <0.1                                                  |                                         | <0.05    | 11   |
| Oct-01         0.86         1.2         0.7         3.9         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0         -0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                | <0.04        | 1.8         | <0.05 | ١            | 3.3            | <1.1         | ⊽       | 7            | <b>0.1</b>  | -0.1                                                  | <br> <br>                               | <0.05    | 5.4  |
| Mar-02         O21         5.2         < 0.05         1.1         1.3         < 0.9         < 1.2         < 2.2         < 1.7           Mar-02         Duplicate         0.25         5.9         < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                | 0.86         | 12          | 0.7   |              |                |              |         |              | <0.1        | -Q                                                    |                                         | <0.05    |      |
| Mar-02         Duplicate         0.25         5.9         4.0.05         1.3         1.4         40.5         <1.2         <2.2         <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -             |                | 0.21         | 5.2         | <0.05 | I            | 1.3            | ≪0.9         | <1.2    | <2.2         | ⊽           | ⊽                                                     |                                         | <0.5     | <5.0 |
| Sep-02         O76         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         076         077         077         077         077         077         077         077         077         077         077         077         077         077         077         077         077         077         077         077         077         077         077         077         077         077         077         077         077         077         077         077         077         077         077         077         077         077         077         077         077         077         077         077         077         077<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <del>-</del>  | <del> </del> - |              | 5.9         | <0.05 | İ            | 4              | 6.0>         | <12     | 22           | ₹           | V                                                     |                                         | <0.5     | <5.0 |
| Oct-98         7.5         < ND         3.8         1.4         1.76         96.7         ND         51           Oct-88         Duplicate         8.5         < ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <del> </del>  | <del> </del>   | <u>!</u>     | 0.76        | 200   | <u> </u>     | 2              | €.0>         | <1.2    | 2.2          | <0.1        | <0.1                                                  |                                         | <0.05    | ı    |
| Oct-98 Duplicate         8.5         < ND         4.8         16         174         89.9         46.8           Mar-39 Mar-39 Duplicate         5.6         5.3         1.9         1.1         5.1         11         6.1         1.0         2         4.6         2         7         7         7         7         7         7         7         7         7         7         7         7         7         4         7         7         7         4         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _             |                | 7.5          | QNV         | 3.8   | <u>L</u> _   | 1.76           | 95.7         | 2       | 51           |             |                                                       | 2                                       | S        | 1    |
| Már-99         56         53         19         11         51         11         61         2         45         2           Nov-99         0.68         1.3         40.5         1.7         40.6         2         45         5         7           Apr-00         Upplicate         5.9         4.5         2.4         1.7         4.0         2         4.5         1.2.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -             |                | 8.5          | QN≻         | 4.8   |              | 1.74           | 89.9         |         | 46.8         |             |                                                       |                                         |          | 1    |
| Nov-99         0.68         1.3         <0.5         1.7         <0.6         2         <5         5         5          Apr CO         Nov-99         Nov-99         1.3         <0.5         1.7         <0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | <b></b>        | 5.6          | 5.3         | 1.9   | ļ            | 5.1            | 11           | Q       | 2            |             |                                                       | 2                                       | Q        | ND   |
| Apr-00         59         4.5         2.4         9.7         2         28         <5         2.3         17.2.3           Apr-00         Duplicate         5.9         4.5         2.3         10         19         27         <5         2.7         17.2         7.2           Oct-00         5.5         4.4         1.4         9.5         2.2         <1.1         <1.1         <0.1            Apr-01         1.0         2.2         0.48         4.5         4.8         3.1         <1.1         <0.1            Apr-01         1.0         1.0         2.2         0.48         4.5         4.8         3.1         <1.1         <0.1         <0.1           Oct-01         1.0         1.0         0.20         0.48         0.0         <0.0         <0.0         <0.0         <0.0         <0.0         <0.0         <0.0         <0.0         <0.0         <0.0         <0.0         <0.0         <0.0         <0.0         <0.0         <0.0         <0.0         <0.0         <0.0         <0.0         <0.0         <0.0         <0.0         <0.0         <0.0         <0.0         <0.0         <0.0         <0.0         <0.0         <0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                | 0.68         | 1.3         | <0.5  |              | <0.0>          | 2            | \$      | S            |             |                                                       | <10                                     | \-\<br>V | ;    |
| Agr-400         Duplicate         5.9         4.4         1.4         9.5         2.3         40         19         27         <5         4.2         T7.2           Cct-00         5.5         4.4         1.4         9.5         2         <11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | _              | 5.9          | 4.5         | 2.4   |              | 2              | 28           | ₽       | 2.3          | T2.3        | <0.25                                                 |                                         | <0.5     |      |
| Oct-00         55         4.4         1.4         9.5         2         <1.1         <1.1         <0.1         <0.1           Apr-01         19         2.1         <0.05         6.5         4.8         3.1         <1         <0.1         <0.1           Coct-01         16         2.2         0.48         4.1          <1         <1.1         <0.1         <0.1           Sep-02         2.4         0.94         0.28         2.7         <0.99         <1.2         <1.2         <1           Sep-02         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | -              | 5.9          | က           | 2.3   | _ }          | 1.9            | 27           | \$?     | 7            | T2.2        | <0.05                                                 |                                         | <0.1     | Ş    |
| Apr-01         1.9         2.1         < 0.05         6.5         4.8         3.1         <11         < 0.1           Cct-01         1.6         2.2         0.48         4.1         < 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                | 5.5          | 4.4         | 1.4   |              | 2              | <1.1         | ⊽       | √1.1<br>√1.1 | <0.1        | <0.1                                                  |                                         | <0.05    |      |
| Oct-01         16         22         048         4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _             |                | 1.9          | 2.1         | <0.05 | L.J          | 8.             | 3.1          | ⊽       | 7.           | <0.1        | 1.5                                                   |                                         | <0.05    | i    |
| Mar 02         2.4         0.94         0.26         2.7         <0.9         <0.9         <12         <1           Sep-02         1.6         1.3         0.37         1.9         <0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                | 1.6          | 2.2         | 0.48  |              |                |              |         |              | V           |                                                       |                                         | <0.5     | l i  |
| Sep-02         1.6         1.3         0.37         1.9         <0.9         <0.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2         <1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | -              | 2.4          | 0.94        | 0.28  |              | 6.0>           | 6.0>         | <1.2    | <2.2         | ۲           | ٧                                                     |                                         | <0.5     | i '  |
| Oct-90         Cot-90         < 0.01         < 0.01         < 0.01         < 0.01         ND         ND         ND           Oct-90         Duplicate         < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | Ž              | 1.6          | 1.3         | 0.37  | ــــا        | <0.0>          | 6.0>         | <1.2    | <2.2         | 1           |                                                       |                                         | 0.5      | <5   |
| Oct-90         Duplicate         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.02         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                | <0.01        | <0.01       | <0.01 | اا           | 2              | QN           | 2       | 2            |             |                                                       | Q                                       | 2        | Q    |
| Oct-91         CO.05         < 0.05         < 0.05         < 0.05         ND         ND </td <td></td> <th>4</th> <td>\$0.04</td> <td><b>₹</b>00</td> <td></td> <td></td> <td><br/> <br/> <br/> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | 4              | \$0.04       | <b>₹</b> 00 |       |              | <br> <br> <br> |              |         |              |             |                                                       |                                         |          |      |
| Apr-93         ND         ND <th< td=""><td>•••</td><th></th><td><b>0.0</b>5</td><td>&lt;0.05</td><td>8</td><td>0.05<br/>0.05</td><td>Q</td><td>Q</td><td>2</td><td>2</td><td></td><td></td><td>Q</td><td>2</td><td>2</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •••           |                | <b>0.0</b> 5 | <0.05       | 8     | 0.05<br>0.05 | Q              | Q            | 2       | 2            |             |                                                       | Q                                       | 2        | 2    |
| Sep-93         ND         ND <th< td=""><td></td><th></th><td>g</td><td>2</td><td>2</td><td>Ş</td><td>2</td><td>Q</td><td>2</td><td>2</td><td></td><td></td><td>QN</td><td>2</td><td>윤</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                | g            | 2           | 2     | Ş            | 2              | Q            | 2       | 2            |             |                                                       | QN                                      | 2        | 윤    |
| Apr-95         ND         ND <th< td=""><td></td><th>~</th><td>2</td><td>Q</td><td>Q</td><td>QN&gt;</td><td>Q</td><td>QN</td><td>2</td><td>2</td><td></td><td></td><td>ON</td><td>2</td><td>2</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | ~              | 2            | Q           | Q     | QN>          | Q              | QN           | 2       | 2            |             |                                                       | ON                                      | 2        | 2    |
| Oct-95         ND         ND <th< td=""><td></td><th></th><td>2</td><td>Q</td><td>Q</td><td>QN⊳</td><td>2</td><td>Q</td><td>9</td><td>2</td><td></td><td></td><td>Q</td><td>2</td><td>S</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                | 2            | Q           | Q     | QN⊳          | 2              | Q            | 9       | 2            |             |                                                       | Q                                       | 2        | S    |
| Feb-96         ND         ND <th< td=""><td></td><th></th><td>2</td><td>9</td><td>2</td><td>QN⊳</td><td>Q.</td><td>ΩN</td><td>Q</td><td>Q</td><td></td><td></td><td>ΩN</td><td>ΩN</td><td>9</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                | 2            | 9           | 2     | QN⊳          | Q.             | ΩN           | Q       | Q            |             |                                                       | ΩN                                      | ΩN       | 9    |
| May-96         ND         ND <th< td=""><td>_</td><th></th><td>2</td><td>2</td><td>2</td><td>Q.V</td><td>Q</td><td>QN</td><td>S</td><td>2</td><td></td><td></td><td>Q</td><td>2</td><td>S</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _             |                | 2            | 2           | 2     | Q.V          | Q              | QN           | S       | 2            |             |                                                       | Q                                       | 2        | S    |
| Sep-96         ND         ND <th< td=""><td></td><th>2</th><td>2</td><td>2</td><td>QN</td><td>QN&gt;</td><td>ON.</td><td>QN</td><td>2</td><td>9</td><td></td><td></td><td>9</td><td>2</td><td>2</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | 2              | 2            | 2           | QN    | QN>          | ON.            | QN           | 2       | 9            |             |                                                       | 9                                       | 2        | 2    |
| Dec-96         ND         ND <th< td=""><td></td><th>3.5</th><td>2</td><td>Q</td><td>Q</td><td>Q¥<br/>V</td><td>9</td><td>QN</td><td>Q</td><td>Q</td><td></td><td></td><td>QN</td><td>2</td><td>2</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 3.5            | 2            | Q           | Q     | Q¥<br>V      | 9              | QN           | Q       | Q            |             |                                                       | QN                                      | 2        | 2    |
| Mar-97         ND         ND <th< td=""><td>Ι</td><th></th><td>2</td><td>₽</td><td>2</td><td>QN&gt;</td><td>Q</td><td>QN</td><td>2</td><td>Q</td><td></td><td></td><td>Q</td><td>2</td><td>2</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ι             |                | 2            | ₽           | 2     | QN>          | Q              | QN           | 2       | Q            |             |                                                       | Q                                       | 2        | 2    |
| Oct-97         ND         ND <th< td=""><td>_</td><th>7 (</th><td>2</td><td>S</td><td>2</td><td>Q</td><td>2</td><td>Q</td><td>2</td><td>Q</td><td></td><td></td><td>2</td><td>2</td><td>2</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _             | 7 (            | 2            | S           | 2     | Q            | 2              | Q            | 2       | Q            |             |                                                       | 2                                       | 2        | 2    |
| Mar-99 ND ND ND SND ND ND ND ND ND ND ND ND ND ND ND ND N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ڊ <b>س</b> .، |                | 2            | 2           | 2     | QN>          | 2              | 2            | 오       | 2            |             |                                                       | 2                                       | 2        | 2    |
| Mar-99 ND ND ND 0.08 I ND ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | <b></b>        | 2            | 2           | 2     | QN           | 2              | Q            | 2       | 2            |             |                                                       | 2                                       | 2        | 2    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | 6              | 2            | 2           | 2     | 0.08         | 2              | 2            | 2       | Q            |             |                                                       | 2                                       | 2        | 2    |

Page 13 of 14


| MTBE             | Ē,        | \$                            | ٠           | Ş,             | <5.0        |
|------------------|-----------|-------------------------------|-------------|----------------|-------------|
| 1000             | 'n        | 0,                            | <0.05       |                |             |
| Chlordane        | ľgu       |                               |             |                |             |
| y-Chlordane (    | l/gri     | <0.05                         | <0.1        |                |             |
| x-Chlordane      | l/grl     | <0.05                         | -0.1        |                |             |
| Xylenes α-C      | - F6      | ≎                             | 1.1         | -<br>√.1       | <2.2        |
| Toluene∯         | 5         | Ą                             | ⊽           | ⊽              | <1.2        |
| Ethylbenzene     | - Br      | ⊽                             | 4.1         | <1.1           | 6.0         |
| Benzene          | l/gr      | ⊽                             | 6<br>0<br>7 | 6.0×           | 60>         |
| C & BHC          | -<br>Pg   | <0.05                         | <0.03       |                |             |
| y-BHC            | ğ         | <0.05                         | <0.05       |                |             |
| 3-BHC            | /gr       | <0.05                         | <0.05       | <del> </del> - |             |
| a-BHC B-BHC y-BH | Von       | <0.05                         | <b>0.04</b> |                |             |
|                  | Duplicate | MW-D Apr-00 <0.05 <0.05 <0.05 | Replicate   |                |             |
|                  | Date      | Apr-00                        | Apr-00      | Apr-01         | MW-D Mar-02 |
|                  | Well ID   | Q-MM                          | Q-MM        | MW-D           | Q-MM        |

Appendix C Depth to Water vs. Concentration at Chevron Orlando, Florida

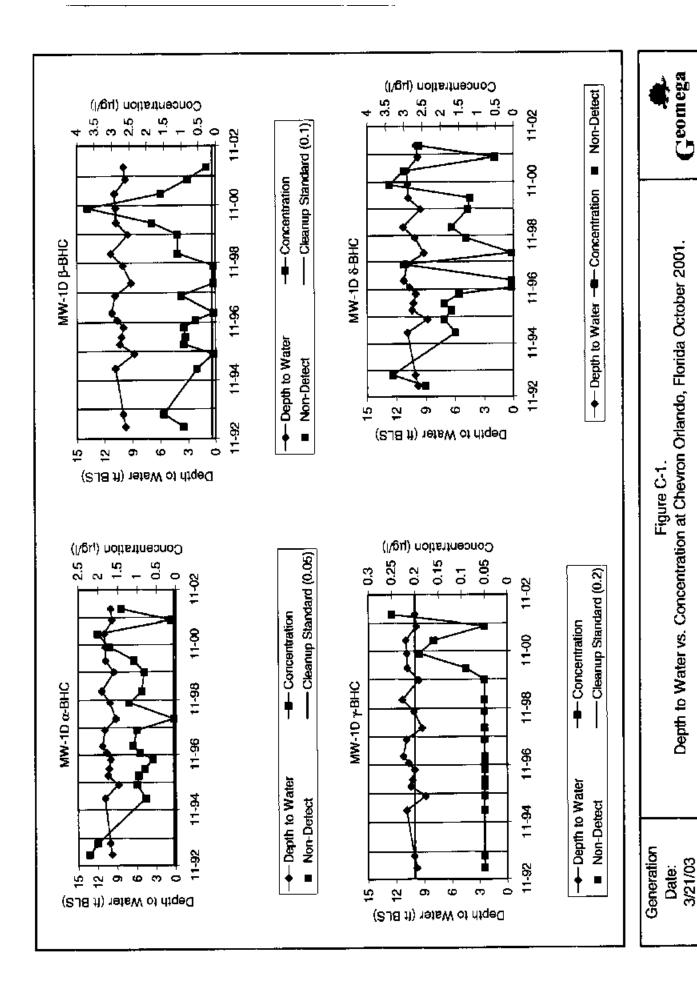


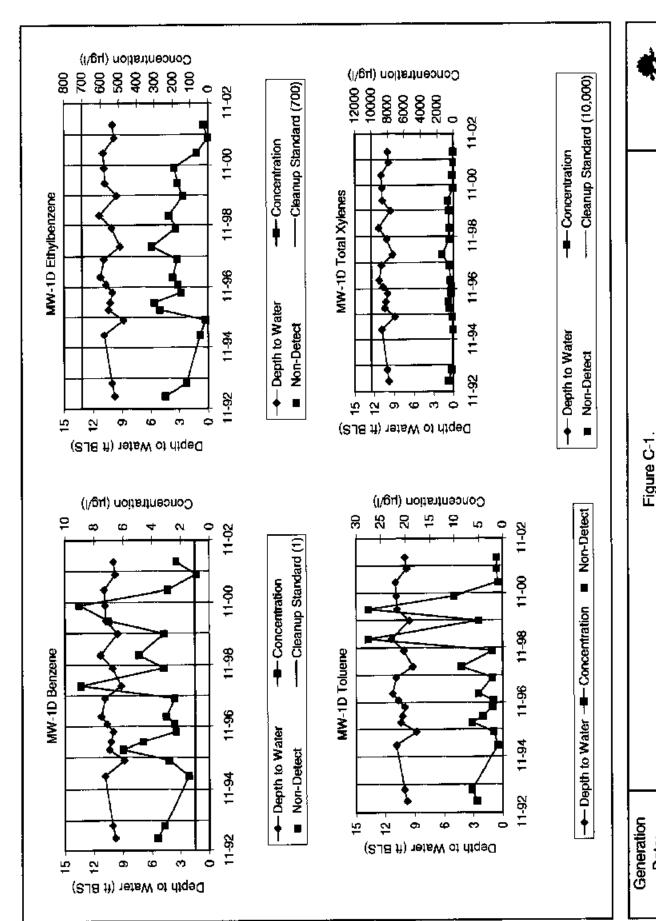
Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001. Figure C-1 P. Chevron Orland Steer Report Final Report Figures Mayred coll Generation 3/21/03 Date:

Ceomega



Date: 3/21/03

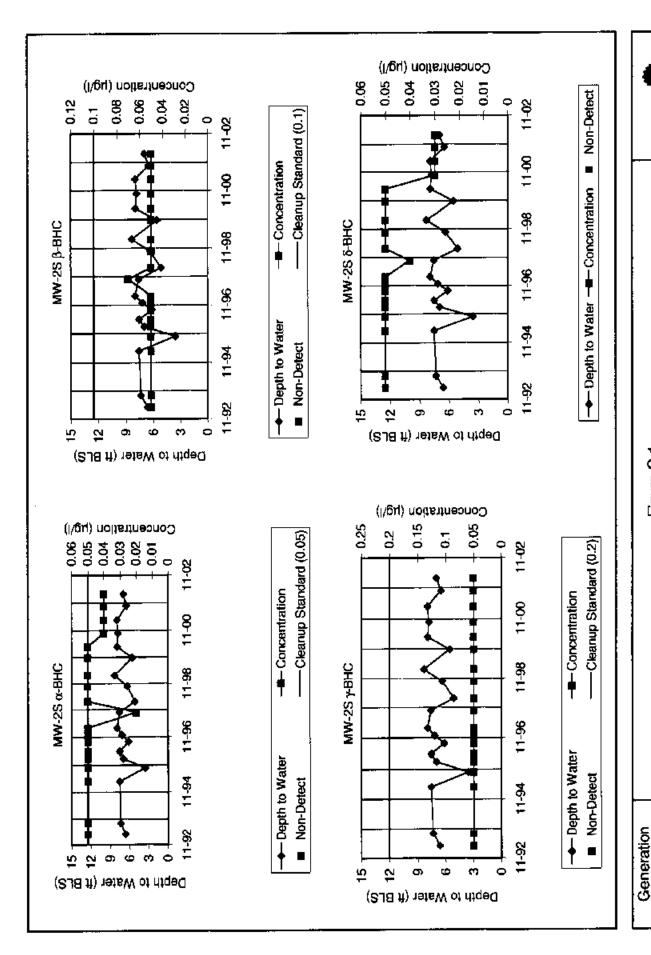

Figure C-1.


Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001.

Ceomega

20.00

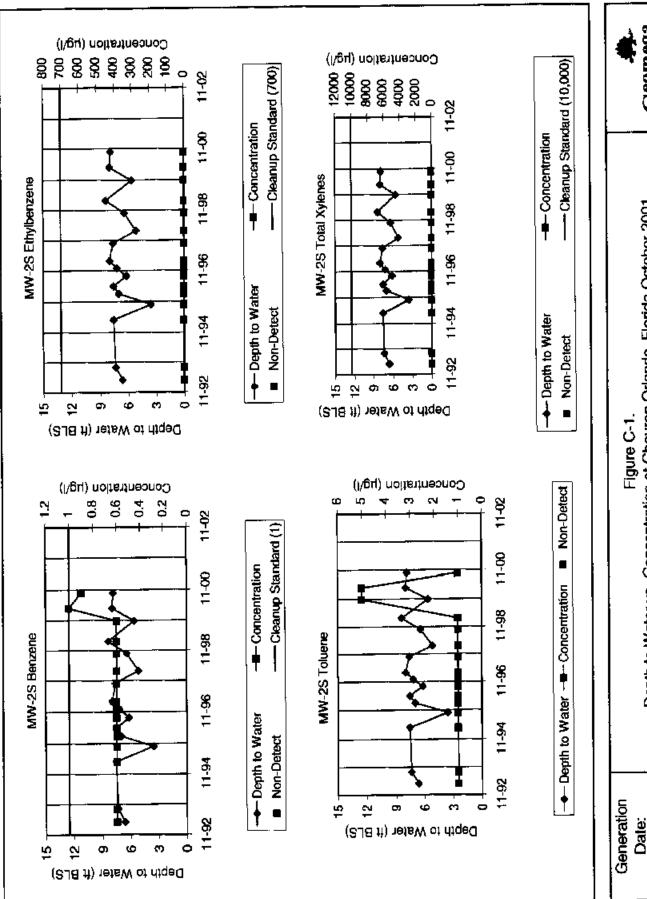
Press 2 of 46






Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001.

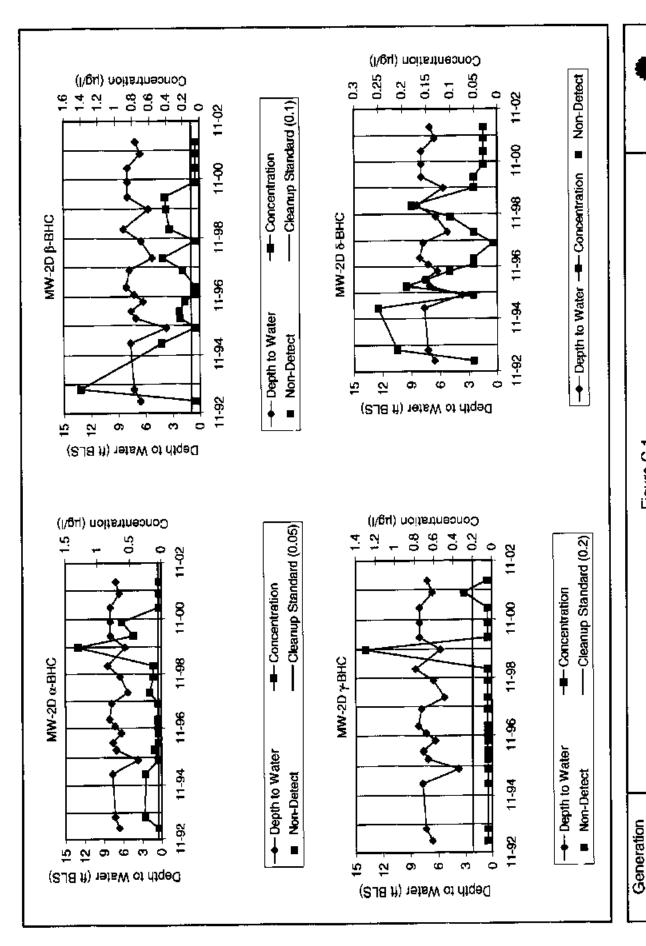
Date: 3/21/03


Сеошева



Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001. Figure C-1. 3/21/03 Date:

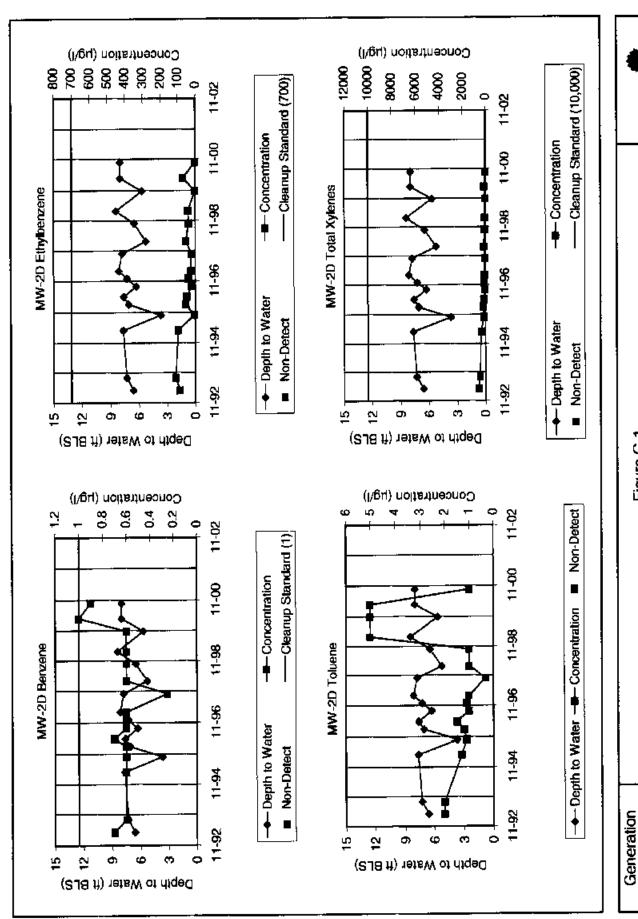
P. Chewon/Orlandol-he Year Report/Final Heporth-igures/Apped c.:


Ceomega



Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001.

Ceomega

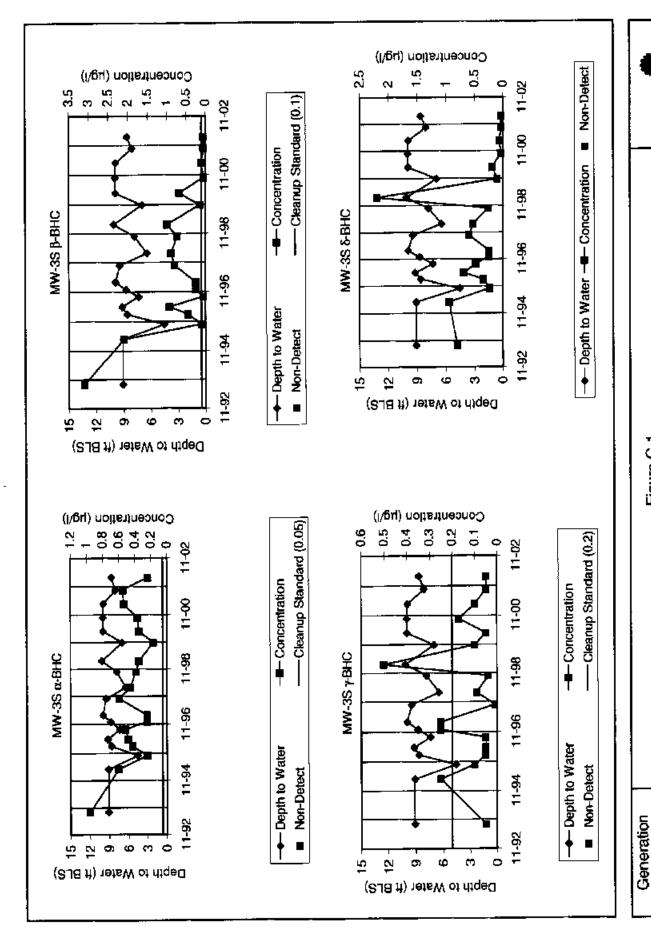

03/21/03



Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001. Figure C-1 3/21/03 Date:

PAChevronOdandOHve Year Reportering Reporterymes Maped co.

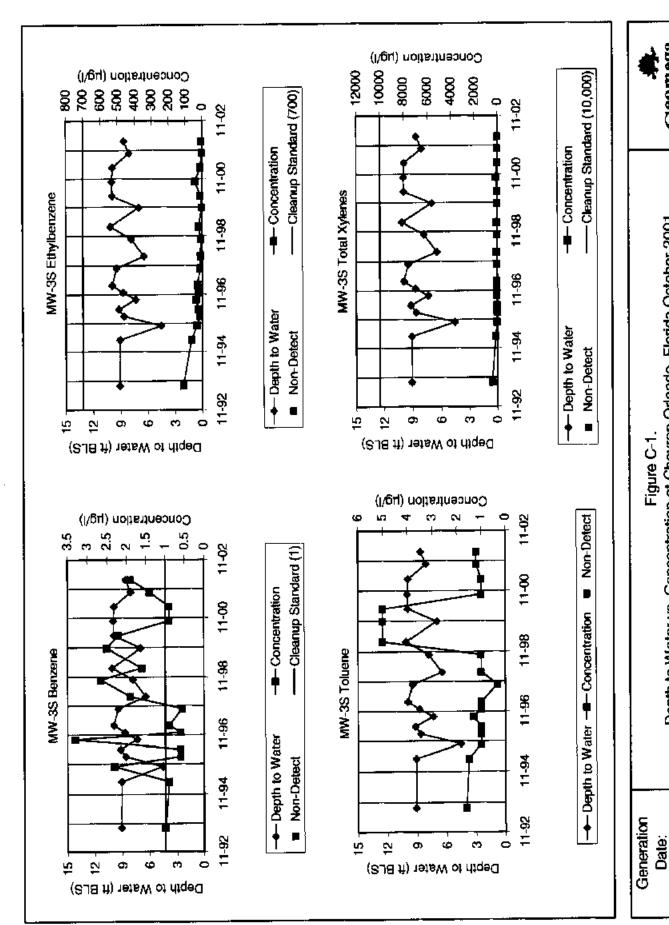
Сеошева




Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001. Figure C-1.

Geomega

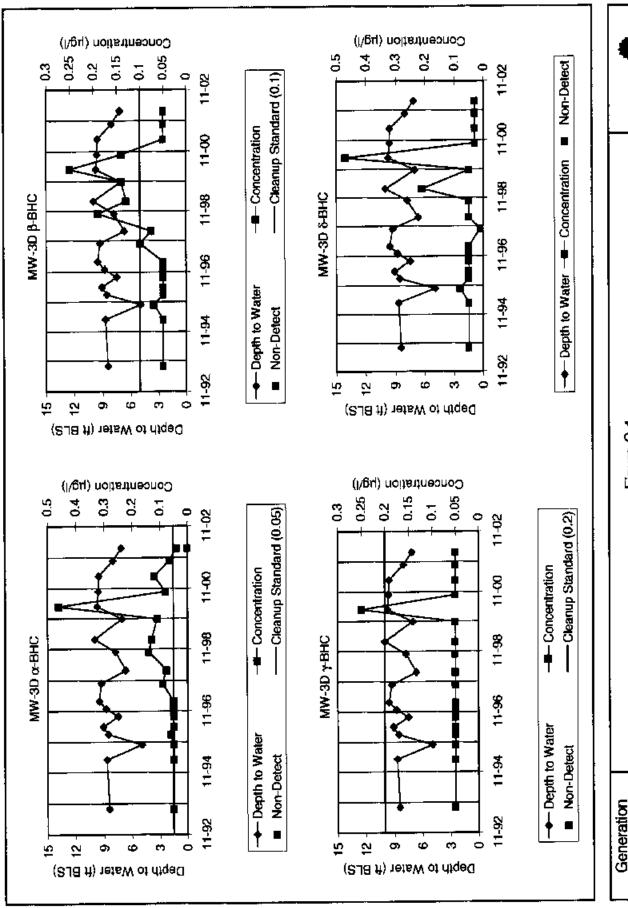
3/21/03


Date:



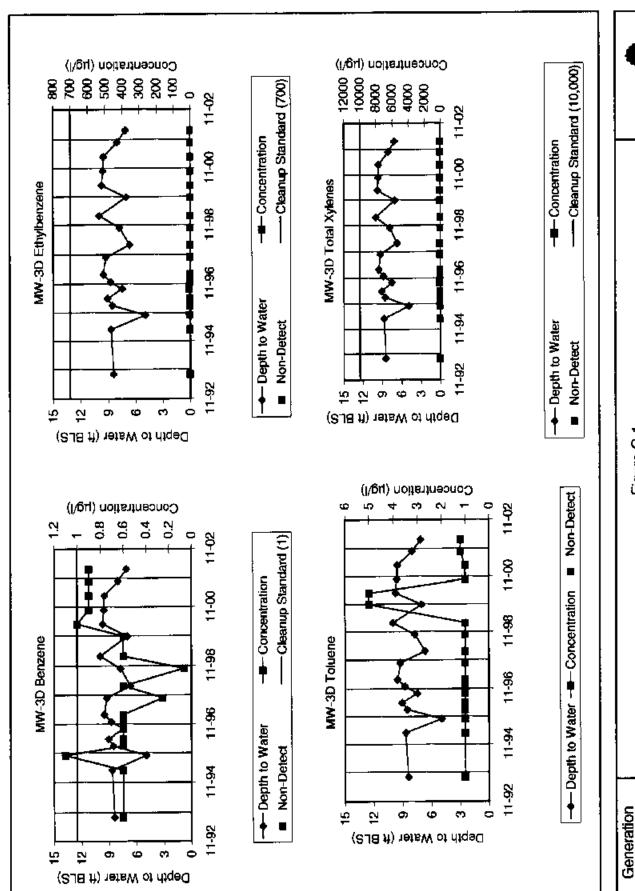
Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001. Figure C-1 03/21/03 Date:

PiChoynoniChandbiFna Year Report/Final Report/Figures/Apped c.X


Ceomega



Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001.

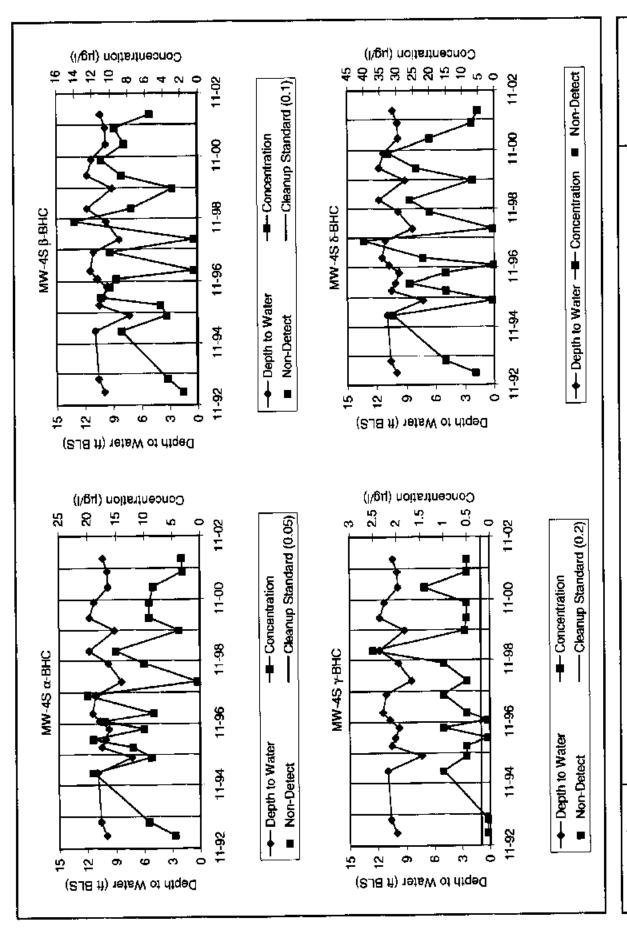

Geomega

3/21/03



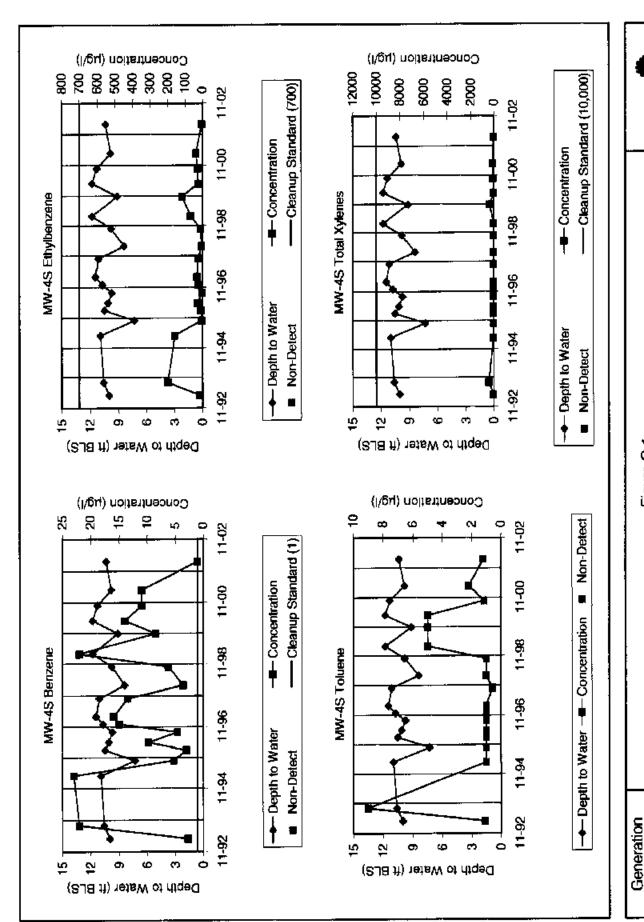
Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001. Figure C-1. \*CharronOrtendo/Five Year ReportFinal Report/Figures/Apped c.zb Generation 3/21/03 Date:

Сеошева




Ceomega

Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001. Figure C-1

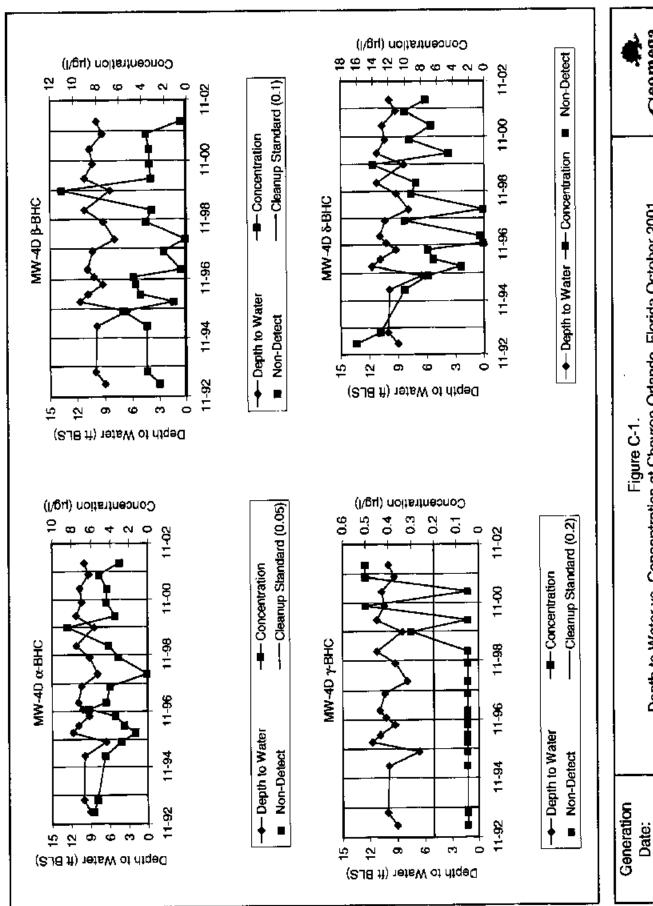

\*CheworlOrlandol-we Y

3/21/03 Date:



Depth to Water vs. Concentration at Chevron Orlando, Horida October 2001. Figure C-1. PACheeronOriendol-Ne Year Repontitival Repontition as Mayard and Generation 3/21/03 Date:

Ceomega .



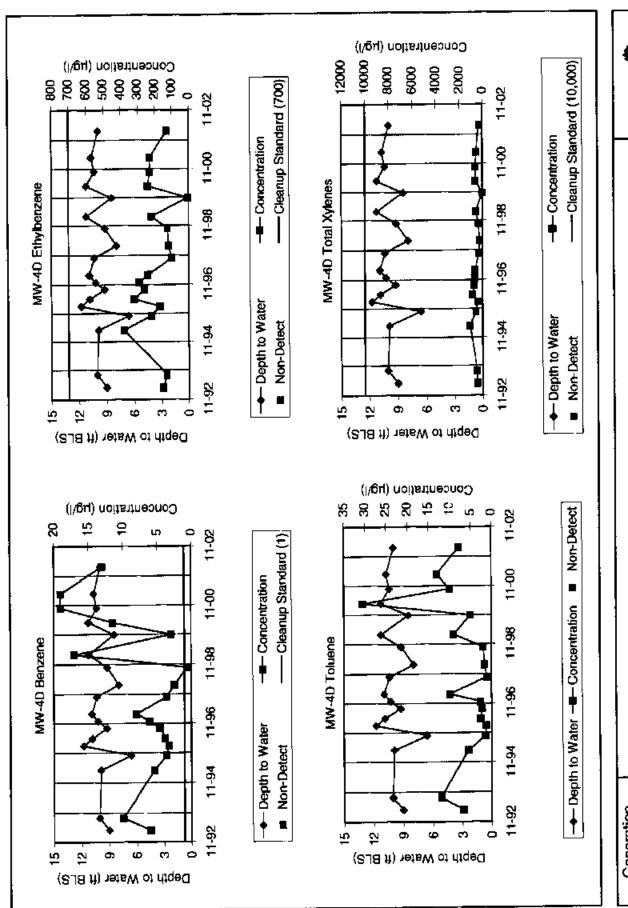

Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001. Figure C-1

Сеошева

hawon Orlando Hwa Yaar Rapark mai Hapar Migures Mppad o x

Date: 3/21/03




Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001.

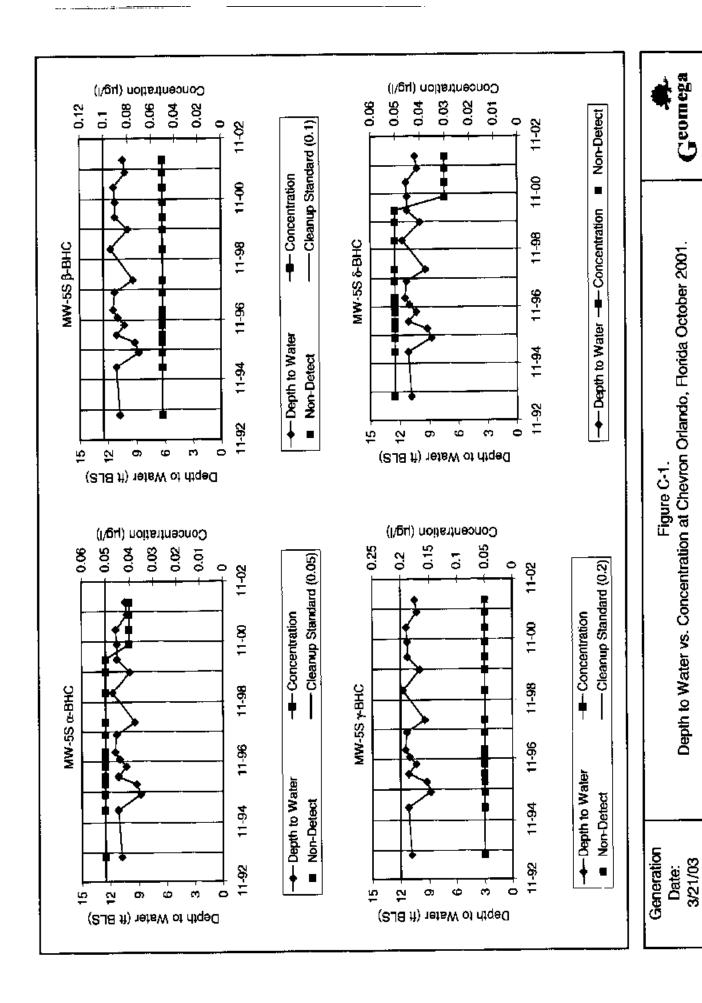
Ceomega

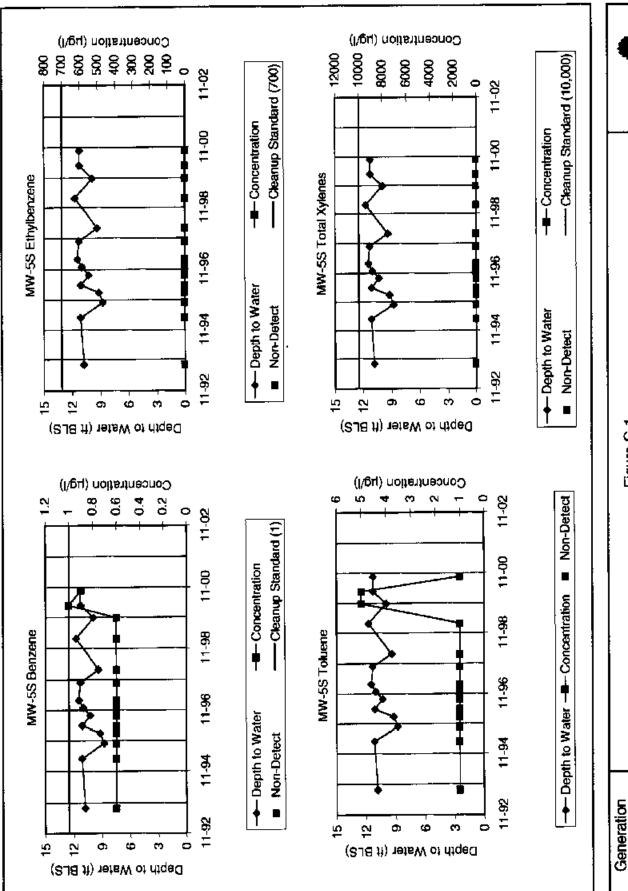
Pare 15 of 48

CharonOrtendal-Ne Year Report From Proporti-igmestal pad con

3/21/03



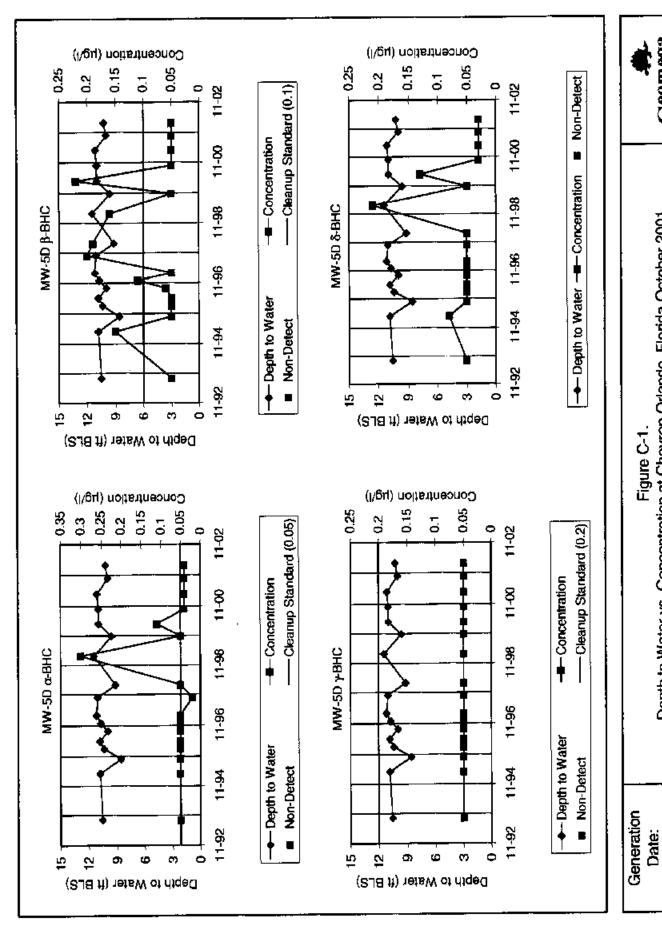

Generation Date: 3/21/03


Figure C-1.

Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001.

30e 16 of 46

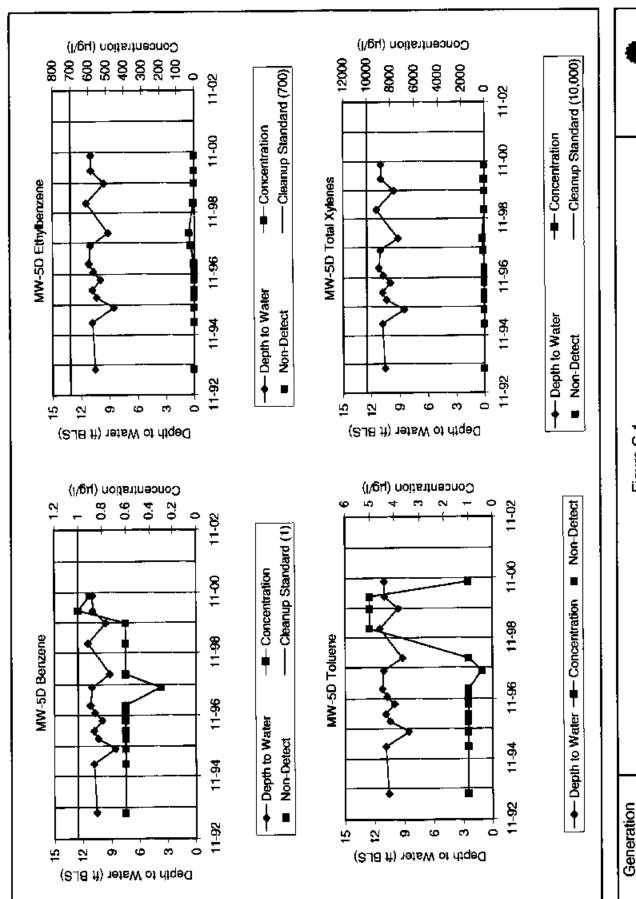
Сеошева






Date: 3/21/03

Figure C-1.

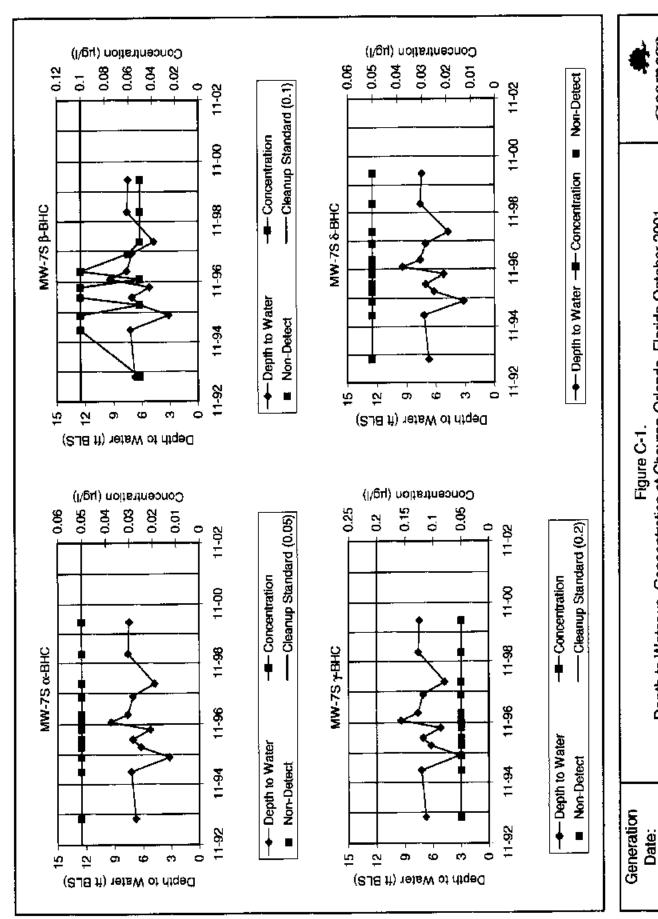

Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001.



Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001.

3/21/03

Сеошева

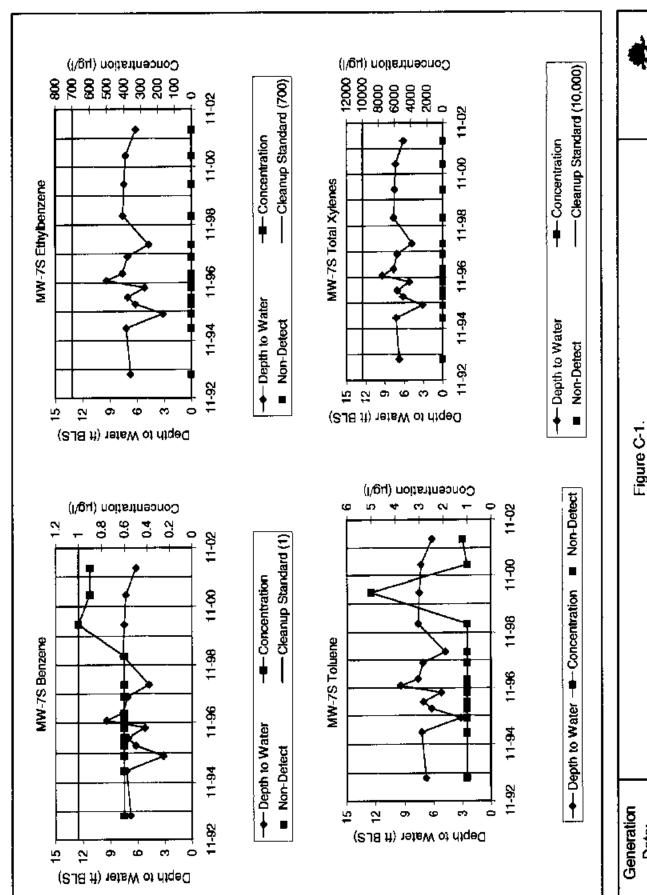



Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001. Figure C-1.

Geomega

Shanter Chandod-ne-Yes

3/21/03 Date:

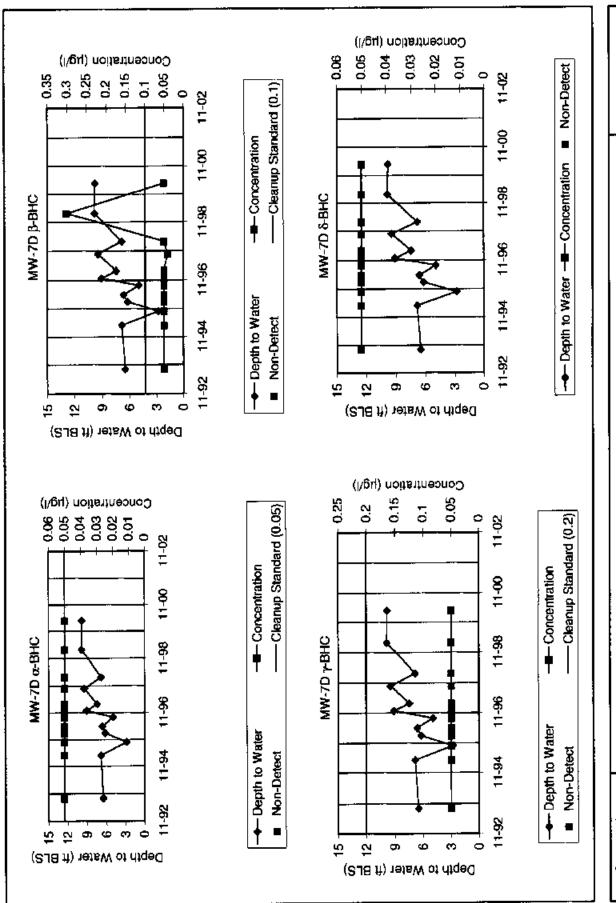



Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001.

Ceomega

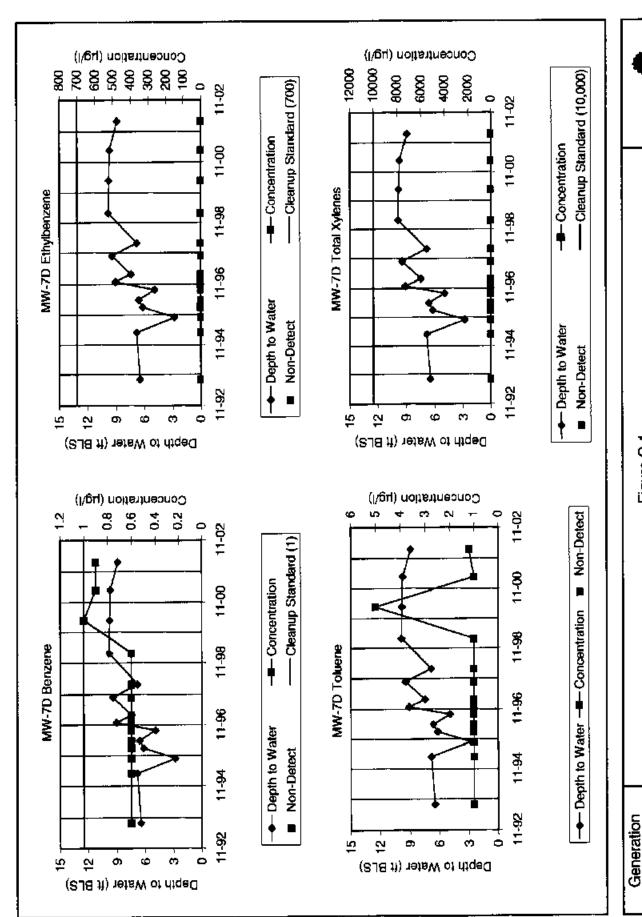
**SchemonCrisisco-No Year Report-Fruit Reports-Figures-Vapped c**ase

3/21/03




Ceomega

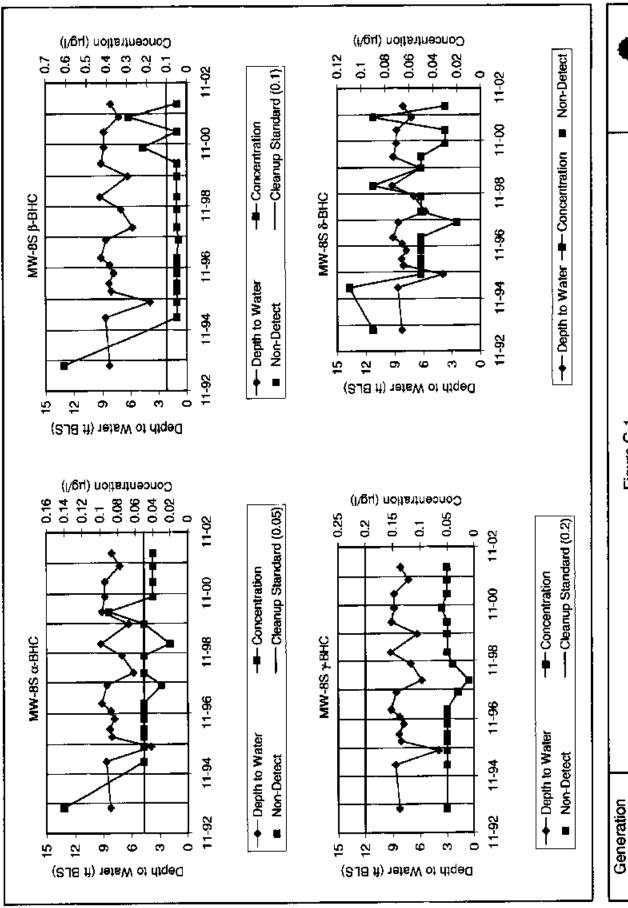
Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001.


3/21/03

Date:

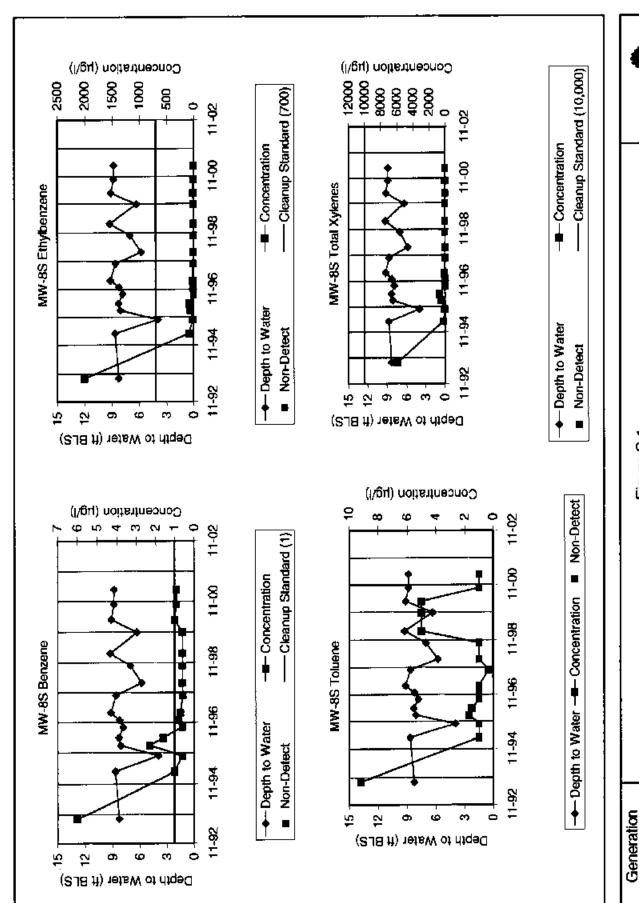


Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001. Figure C-1. Generation Date: 3/21/03


Сеошева



Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001. Figure C-1.

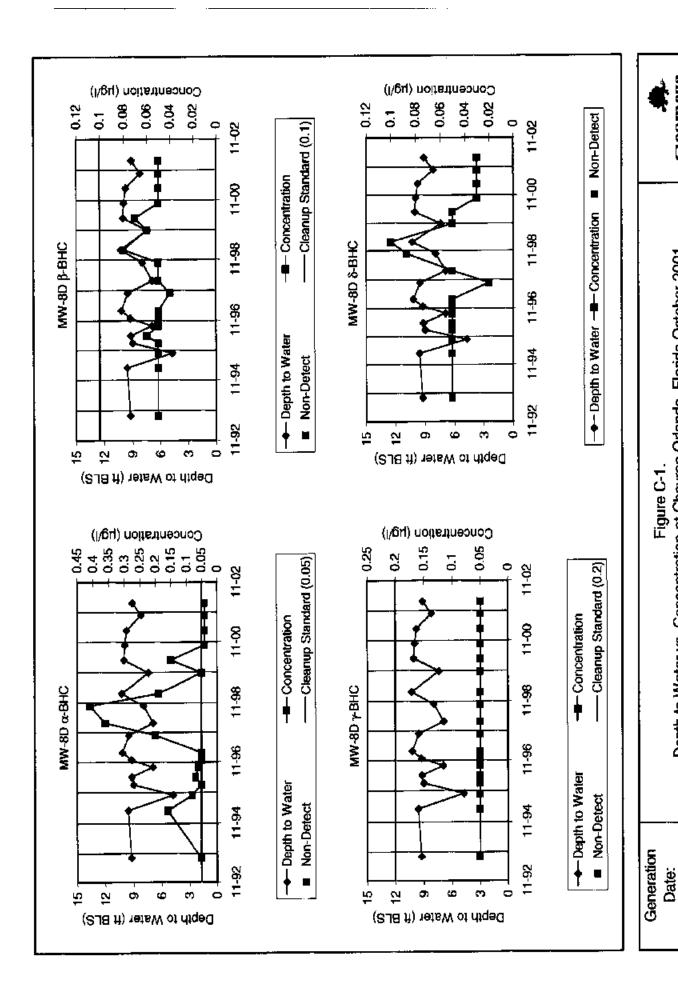

3/21/03

Date:



Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001. Figure C-1. 3/21/03 Date:

Сеошева

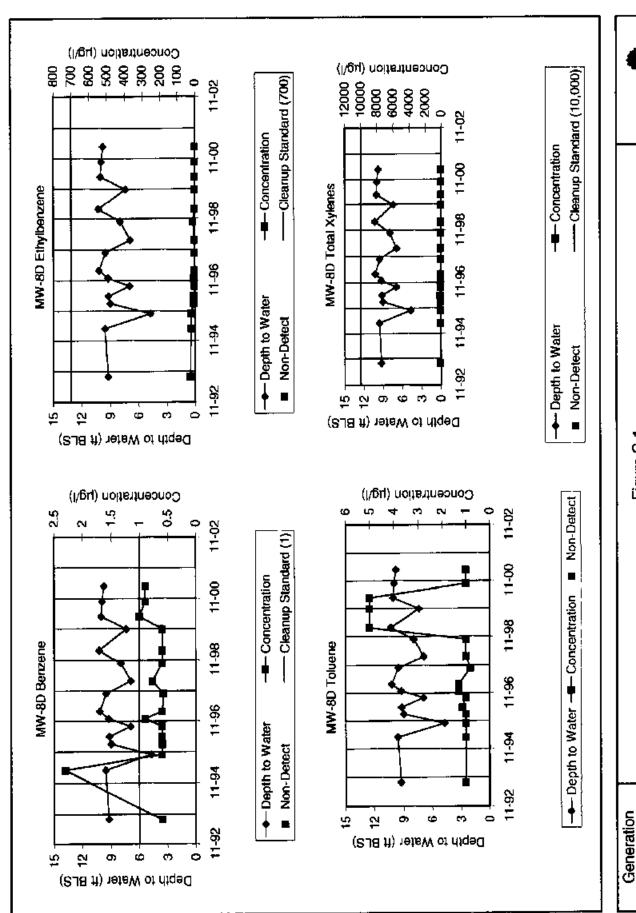



Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001. Figure C-1.

Geomega

Chemon/Orlandol-we Year Repor

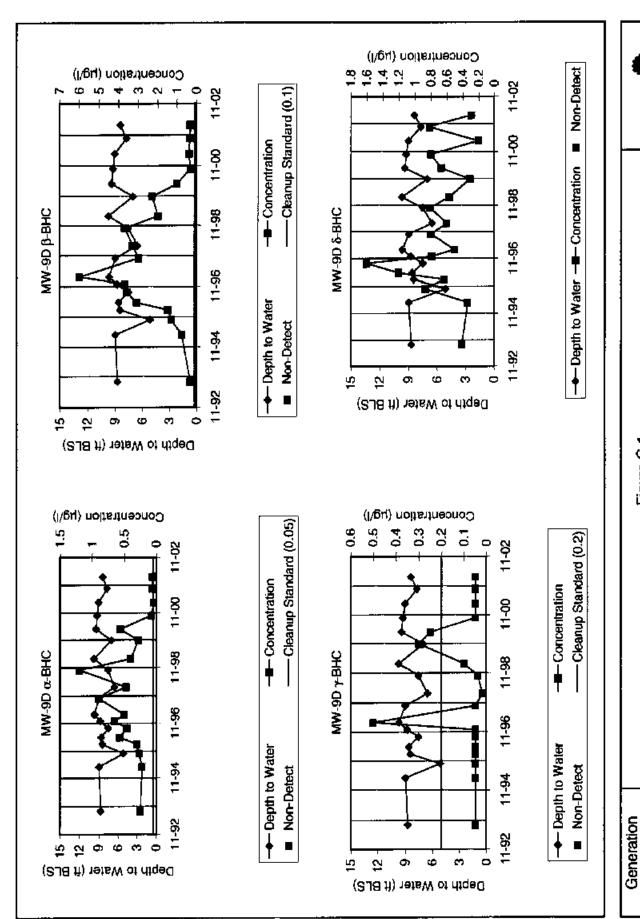
3/21/03 Date:




Сеошева

Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001.

\* IChevroniOrtandolitve Yaar ReportVinal Reportinguras Upped ox


3/21/03



3/21/03 Date:

Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001. Figure C-1.

Geomega



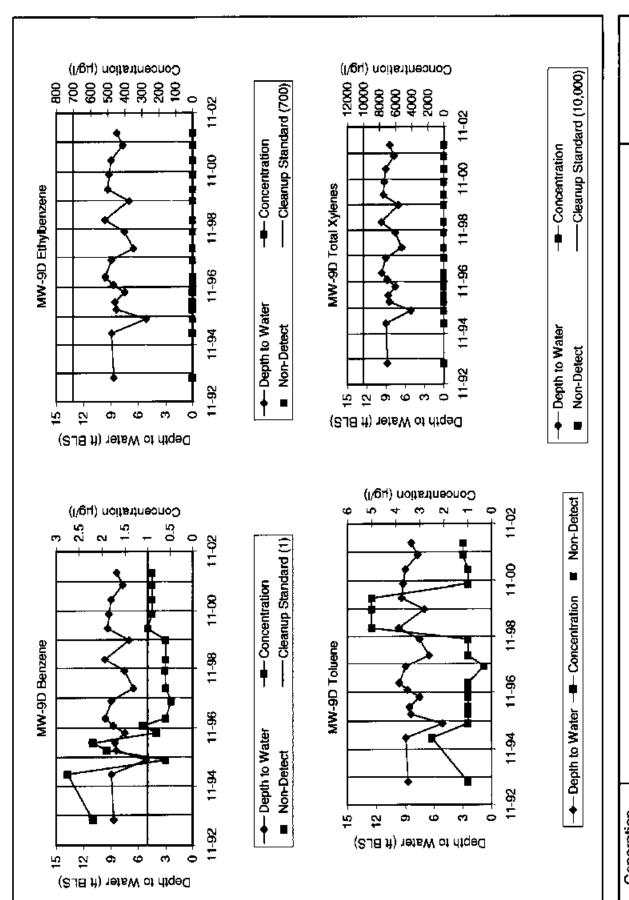
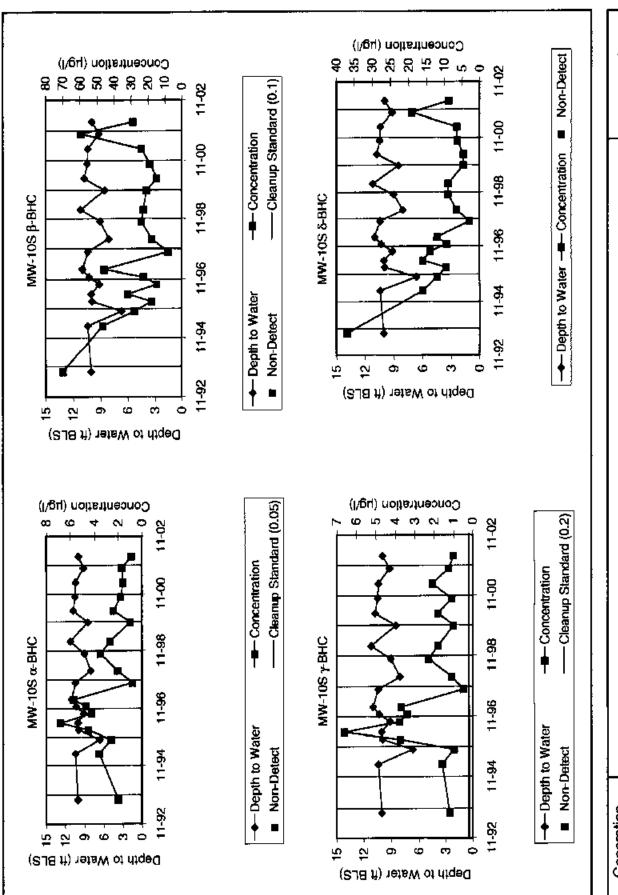

Date: Depth to Water vs.

Figure C-1.

Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001.

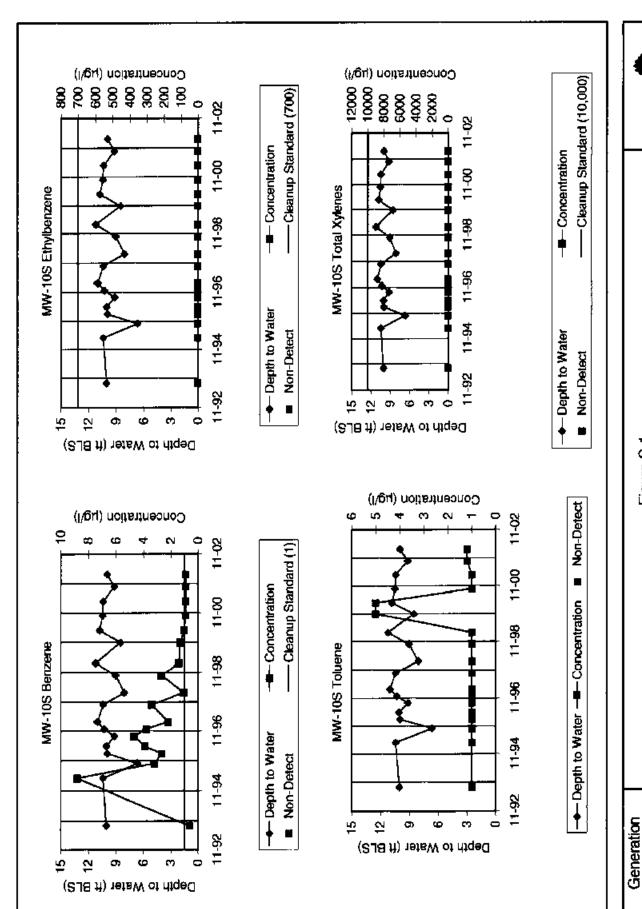
Сеошева

Page 29 of 46




Generation Date: 3/21/03

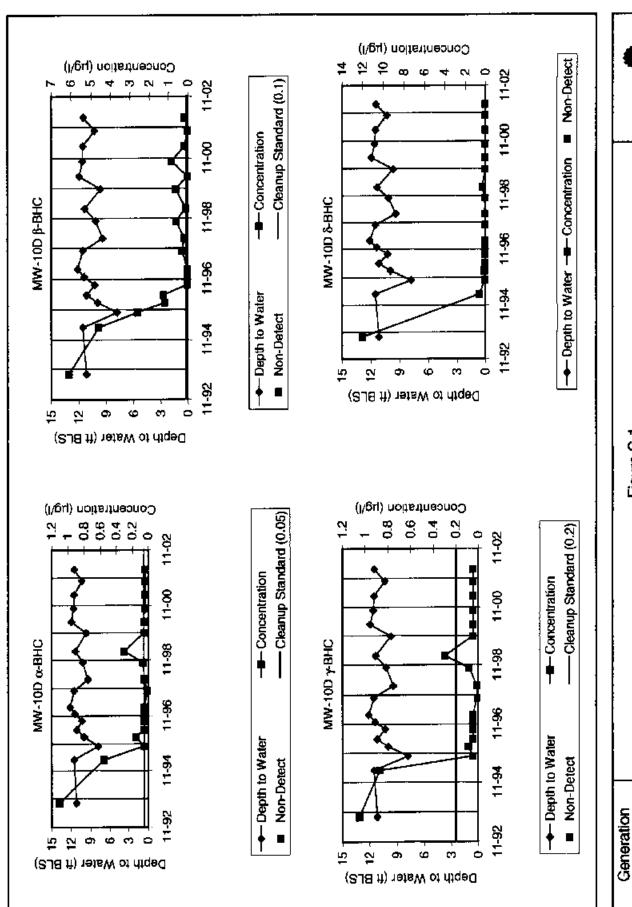
Chemon/Oriendol-Ine Year


Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001. Figure C-1

Geomega



Generation 3/21/03 A Chemonichtendoline Year Reportitinal Reportitiones Mapped and


Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001. Figure C-1.



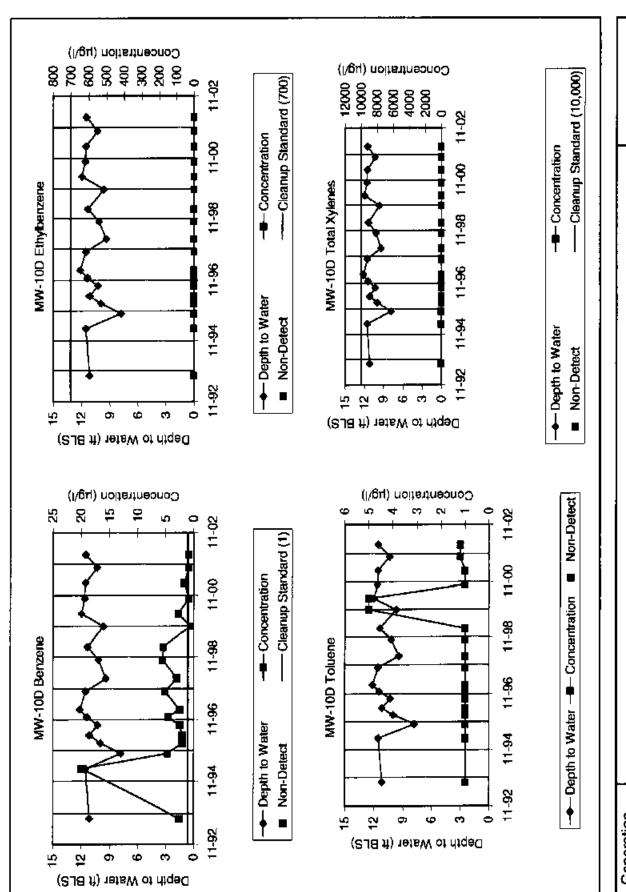
3/21/03 Date:

Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001. Figure C-1.

Geomega



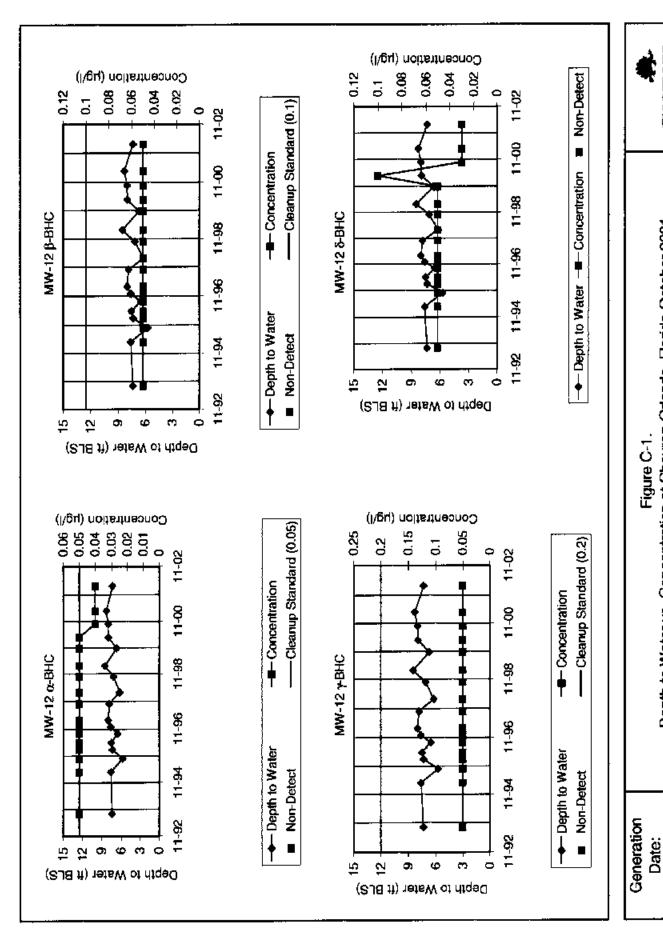
Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001. Figure C-1.


Свошева

10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to

ChevraniOrlandolFue Year Report/Final Report/Figures/Append c.s

3/21/03

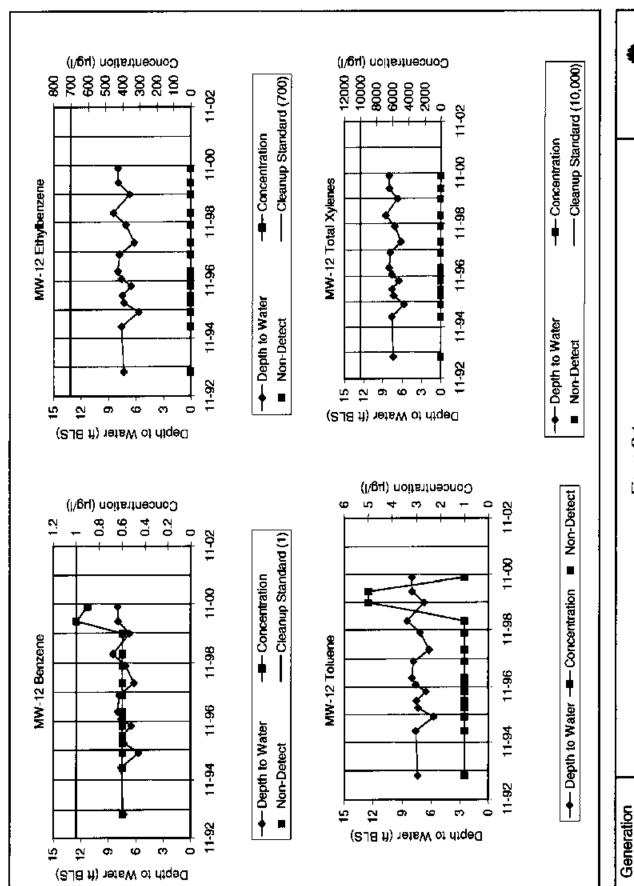

Date:



Generation 3/21/03 Date:

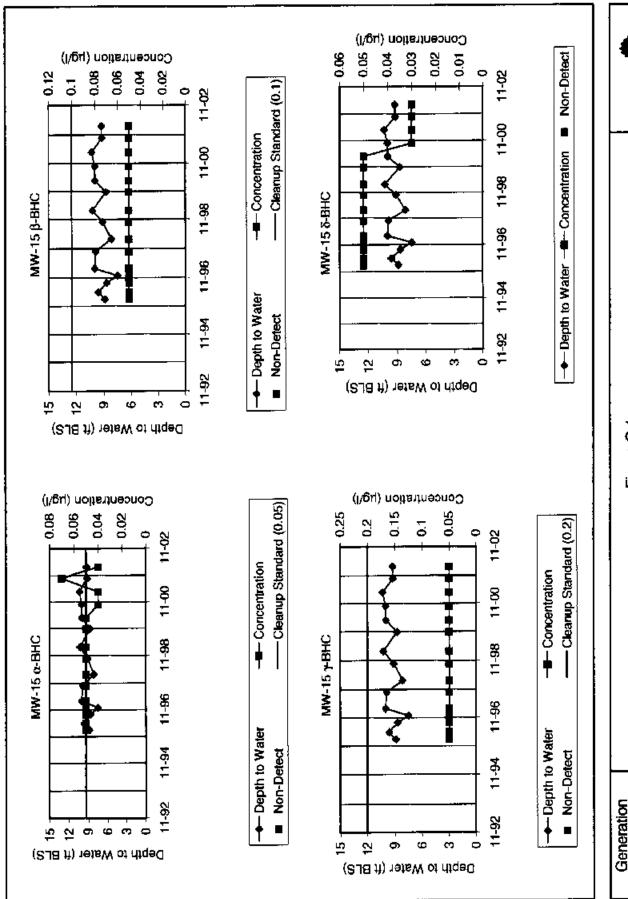
Cherroni Orlando Tres Year Repor

Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001. Figure C-1

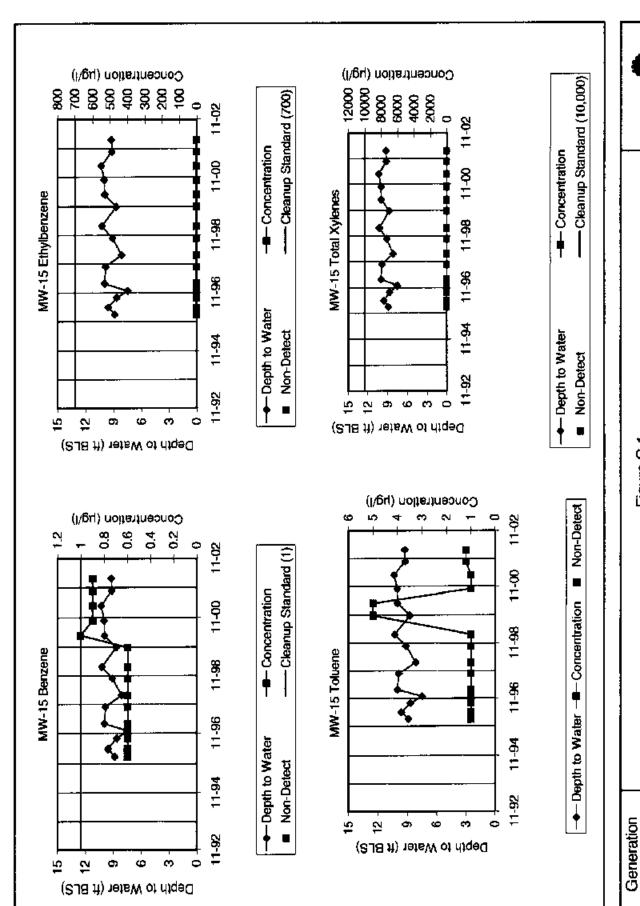



Сеошева

Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001.


\*\*Coordon Chando Fine Vess Report Final Deport Figures Ways and a de

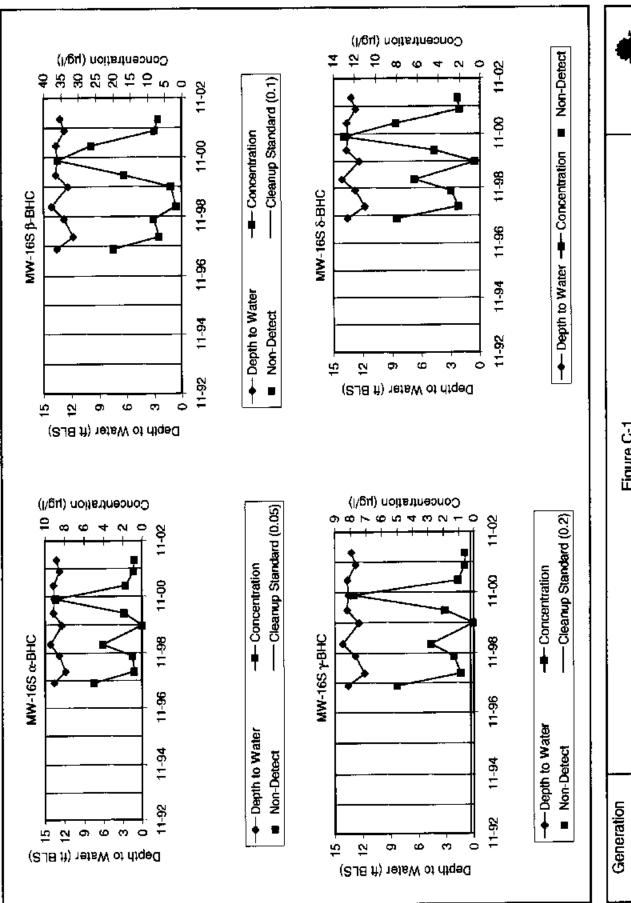
3/21/03




3/21/03 Date:

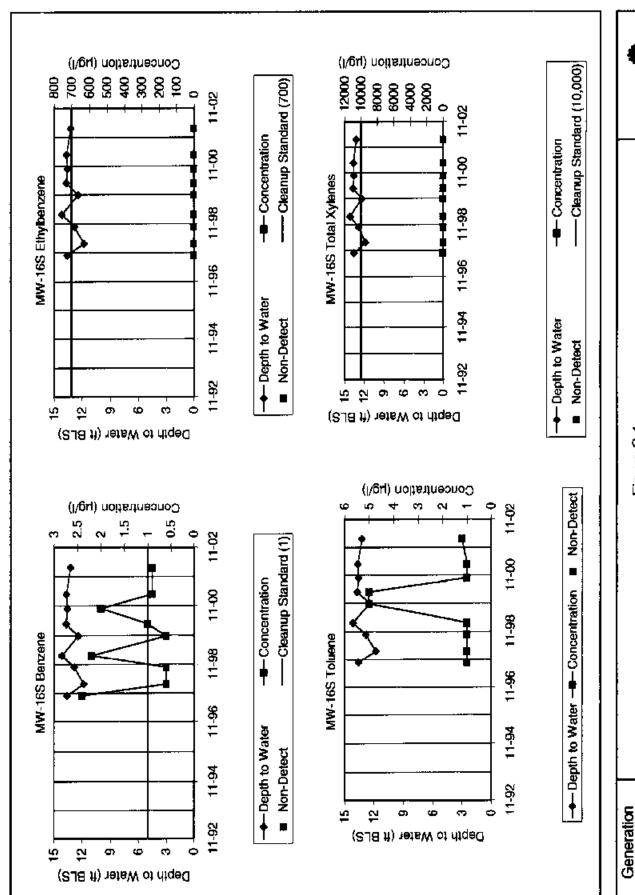
Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001. Figure C-1




Сеошева Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001. Figure C-1. Generation 3/21/03 Date:



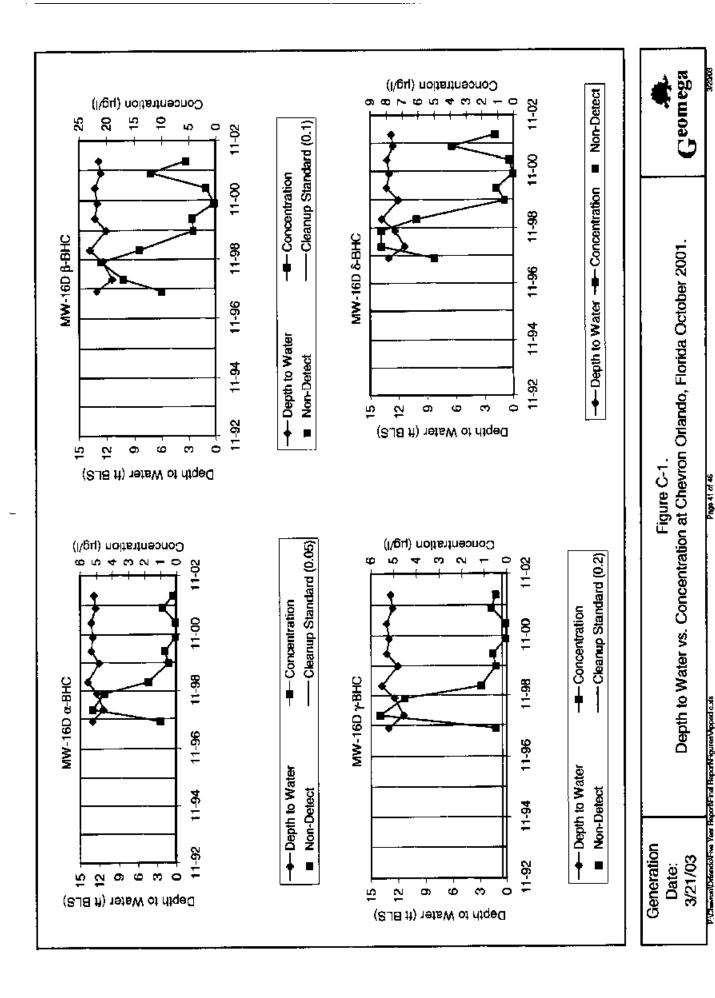
01/13/21/03 Date:

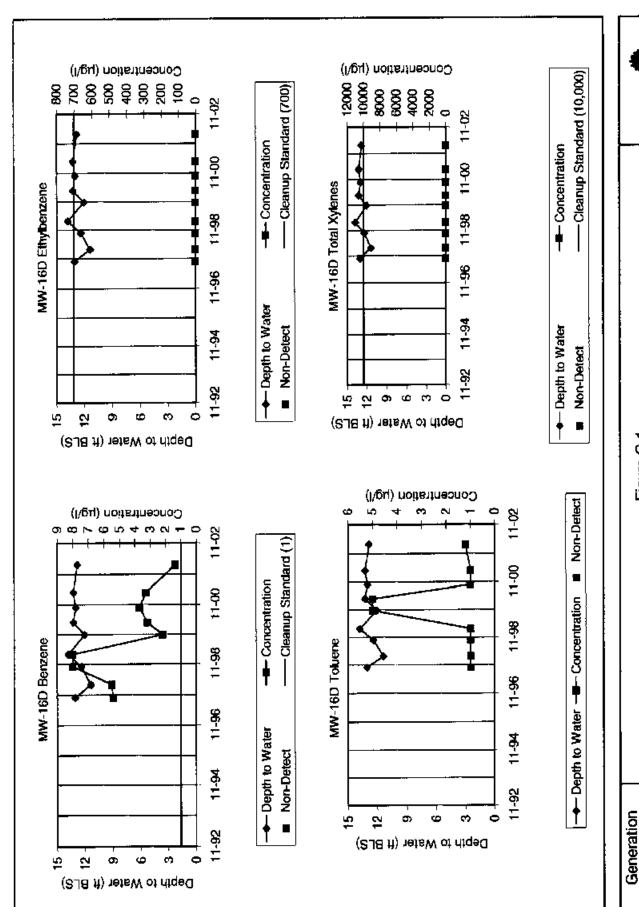

P. Chemini Orbado Phy Year Report Pinal Report Figures Mapped cui

Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001. Figure C-1.



Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001. Figure C-1. 3/21/03 Date:

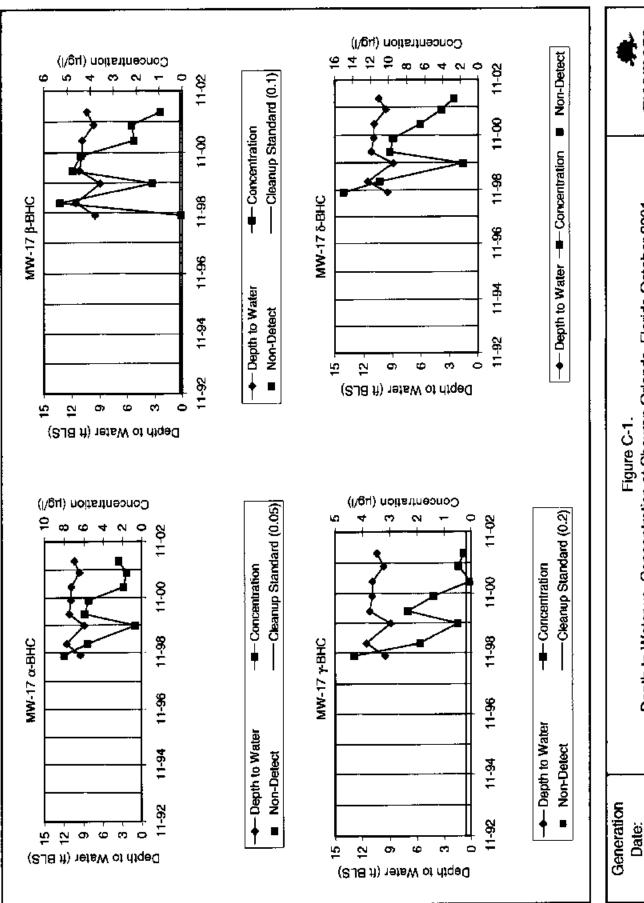

Geomega




03/21/03 Date:

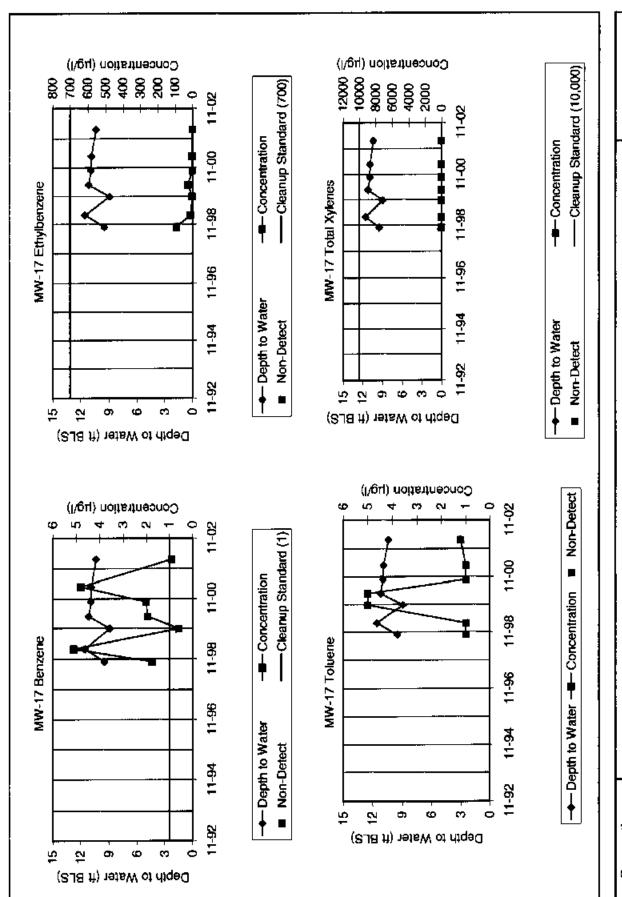
Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001. Figure C-1

Сеошеба





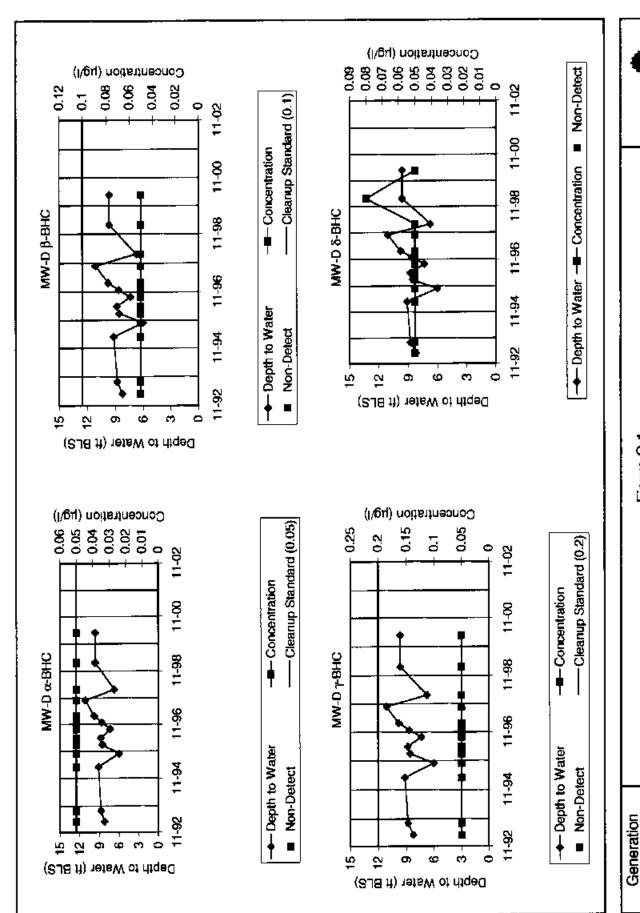

3/21/03 Date:


"ChautonOrlandoV-na Year Heparty-and HaponMagures/Appead c.30

Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001. Figure C-1.

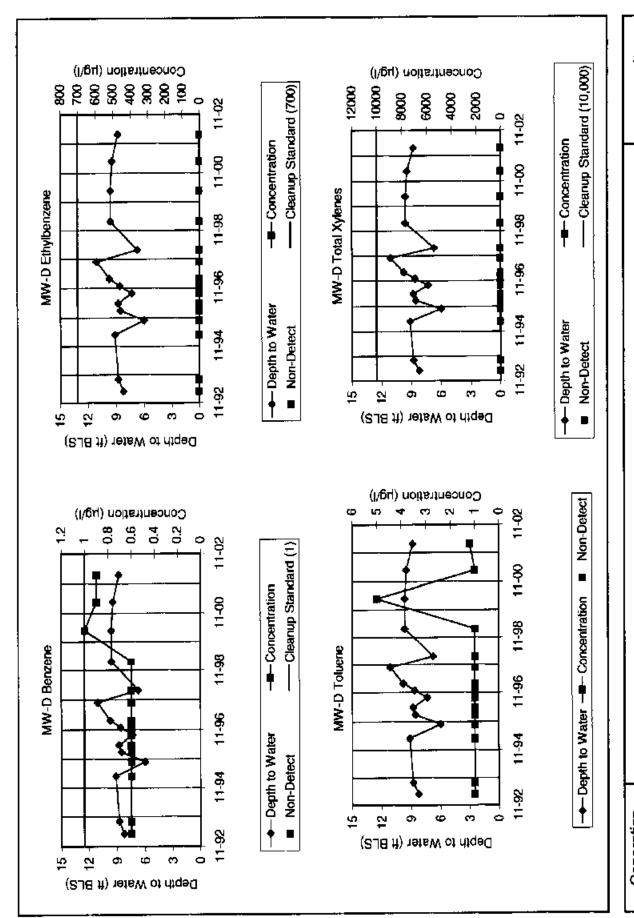


3/21/03


Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001.



Generation 3/21/03 Date:


Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001. Figure C-1.

Сеошева



3/21/03 Date:

Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001. Figure C-1.



Generation 3/21/03 Cherron/Ortando/Five Year Report/Final Report/Figures/Apped c.xl

Depth to Water vs. Concentration at Chevron Orlando, Florida October 2001. Figure C-1

Сеошева

## Appendix D SunLabs Data Sheets



Susan Tobin Task Environmental Consultants, Inc. 501 South Boulevard Tampa, FL 33606

September 26, 2002

Re:

SunLabs Project Number:

020905.02

Client Project Description:

Chevron Orlando

Dear Mrs. Tobin: ...

Enclosed is the report of laboratory analysis for the following samples:

| Sample Number | Sample Description | Date Collected |
|---------------|--------------------|----------------|
| 14213         | CO-EQBLNK-1        | B/ 4/02        |
| 14214         | CO-MW-15           | 9/ 4/02        |
| 14215         | CO-MW-5D           | 9/ 4/02        |
| 14216         | CO-MW-5\$          | 9/ 4/02        |
| 14217         | CO-MW-16S          | 9/ 4/02        |
| 14218         | CO-MW-160          | 9/ 4/02        |
| 14219         | Travel Blank       |                |
| 14220         | CO-FLDBLNK-1       | 9/ 5/02        |
| 14221         | CO-EQBLNK-2        | 9/ 5/02        |
| 14222         | CO-MW-8S           | 9/ 5/02        |
| 14223         | CO-MW-8D           | 9/ 5/02        |
| 14224         | CO-MW-9D -         | 9/ 5/02        |
| 14225         | CO-MW-10S          | 9/ 5/02        |
| 14226         | CO-MW-10D          | 9/,5/02        |
| 14227         | CO-MW-17           | 9/ 5/02        |
| 14228         | CO-MW-15           | 9/ 5/02 .      |
| 14229         | CO-MW-1D .         | 9/ 5/02        |
| 14230         | CD-MW-101D         | 9/ 5/02        |
| 14231         | CO-MW-28           | 9/ 5/02        |
| 14232         | CO-MW-2D           | 9/ 5/02        |
| 14233         | CO-MW-3S           | 9/ 5/02        |
| 14234         | CO-MW-103\$        | 9/ 5/02        |
| 14235         | Travel Blank-2     |                |
| 14236         | CO-EQBLNK-3        | 9/6/02         |
| 14237         | CO-MW-3D           | 9/6/02         |
| 14238         | CO-MW-4S           | 9/ 6/02        |
| 14239         | CO-MW-104S         | 9/ 6/02        |
| 14240         | CO-MW-4D           | 9/ 6/02        |

Cover Page 1 of 2



- These samples were received at the proper temperature and were analyzed as received unless otherwise specified. The results herein relate only to the items tested or to the samples as received by the laboratory.
- This report shall not be reproduced except in full, without the written approval of the laboratory.
- -Results for all solid matrices are reported on a dry weight basis, unless otherwise specified.
- -Results for all water/liquid matrices are analyzed on an as received basis, unless otherwise specified.
- -All samples will be disposed of within 45 days of the date of receipt of the samples.
- -Unless otherwise stated, all samples in the body of the report are environmental samples. All results in the Quality Control (QC) section are labeled appropriately.
- -All results' meet the requirements of the NELAC standards where applicable or as otherwise specified.
- -Footnotes are given at the end of the report, when applicable.
- - Uncertainty values are available upon request.

If you have any questions or comments concerning this report, please do not hesitate to contact us.

Sinderely,

Michael W. Palmer

Vice President, Laboratory Operations

Enclosures



SunLabs Sample Number

## Report of Laboratory Analysis

14213

p.\$ U

2.2 U

0.9 U

SunLabs Project Number

020905.02

Task Environmental Consultants,

Inc.

Project Description

Chevron Orlando

September 26, 2002

| Barrela Danieration                |             |                     | CO-EQBLNK-1  |
|------------------------------------|-------------|---------------------|--------------|
| Sample Designation                 |             |                     |              |
| Date Collected                     |             |                     | 9/4/02 15:00 |
| Parameters                         | Method      | Units               | Résults      |
| Organochlorine Pesticides by EPA N | Method 8081 |                     |              |
| Date Extracted                     |             |                     | 9/6/02       |
| Date Analyzed                      |             |                     | 9/11/02      |
| Surrogate                          | 80B1        | %                   | 83           |
| a-BHC                              | 8081        | υģιL                | 0.04 년       |
| ⊅-BHC                              | 8081        | ug/L                | 0.05 U       |
| Lindane                            | 8081        | ug/L                | 0.05 U       |
| d-BHC                              | 8081        | ug/L                | 0.03 U       |
| Heptadhlor                         | 8081        | ug/L                | 0.04 U       |
| Aldrin                             | 8081        | սերբ                | 0.04 U       |
| 'eptachlor epoxide '               | 8Ó81        | ugiL                | 0.05 U       |
| Chlordane                          | 8081        | , natr              | อ.ฯ บ        |
| g-Chlordane                        | 8081        | ugiL                | ט 1.מ        |
| Endosulfan I                       | BD81        | ոնլr                | 0.05 U       |
| Dielorin                           | 8Ď81        | пВ\Г                | 0.03 U       |
| p.p-DDE                            | 8081        | ugilL               | Q.1D LI      |
| Enddo                              | 8081        | п <mark>а</mark> тг | 0.10 U       |
| Endosylfan II                      | 8081        | பதிட்               | 0.10 U       |
| p.p'-000                           | 8081        | nālL                | 0.05 U       |
| Endrin aldehyde                    | 8081        | րցյ∟                | 0,10 ك       |
| Endosulfan sulfate                 | 8081        | با∤وں               | 0.10 U       |
| p,p'-DDT                           | 8081        | ug/L                | 0.10 U       |
| Endrin ketone                      | B081        | ⊔g∫L                | 0.10 U       |
| Methoxychlor                       | 8081        | عائون               | 0.10 U       |
| Toxaphene                          | 8081        | μg/L                | 3.0 U        |
| Volatile Organic Compounds by Met  | thod 8021   |                     |              |
| Date Analyzed                      |             |                     | 9/10/02      |
| MTBE                               | 8021        | ug/L                | 5.0 U        |
| Benzene                            | 8021        | n <b>a</b> ìr       | 0.9 U        |
| Toluena:                           | 8021        | η <mark>θ</mark> ίΓ | 1.2 U        |

FOEP CompOAP \$70077

عائونا

بالونا

ug/L

8021

8021

8021

Ethylbenzene

Total Xylenes

Total VOA



## Report of Laboratory Analysis

Sunlabs Project Number

020905.02

Task Environmental Consultants, Inc.

Project Description

Chevron Orlando

September 26, 2002

| •                         |                      |               | •              |
|---------------------------|----------------------|---------------|----------------|
| SunLabs Sample Number     |                      |               | 14214          |
| Sample Designation        |                      |               | CO-MW-15       |
| Date Collected            |                      |               | 9/4/02 15:05   |
| Date Conected             | ÷.                   |               | D/ 11012 (2122 |
| Parameters                | Method               | Units         | Résults        |
| Organochiorine Pesticide: | s by EPA Method 8081 |               |                |
| Date Extracted            | •                    |               | 9/6/02         |
| Date Analyzed             | •                    |               | 9/12/02        |
| Surrogate                 | 8081                 | %             | 68             |
| a-BHC                     | 8081                 | ug∧∟          | 0.04 · Ų       |
| b-BHC                     | 8081                 | ug∕L          | 0.05 U         |
| Lindane                   | 8081                 | ոնվո          | 0.05 U         |
| d-≋HĊ                     | 8081                 | nāv           | . 0,03 U       |
| Heptachlor .              | 8081                 | ug/L          | 0.04 U         |
| Alddr                     | 8081                 | uġ∕Ŀ          | 0.04 U         |
| eptachlor epoxide         | 8081                 | ug/L          | 0.05 U         |
| Chlordane .               | . <b>8</b> 081       | بالرؤيا       | 0.1 U          |
| g-Chlordane               | ` 8081               | n8\r          | 0.1 U          |
| Endoşulfan I              | 8081                 | بازون         | 0.05 1         |
| Dieldrin                  | BDB1                 | ug/L          | 0.03 L         |
| p,p'-DDE                  | · 8081               | عالوف         | 0.10 U         |
| En <b>d</b> iin           | BOB1                 | u <u>o</u> ∕L | 0.10 L         |
| Endosvifan II             | 8081                 | υ <b>g</b> /L | 0.10 U         |
| p.p'-DDD                  | 8081                 | ugi <b>l.</b> | 0.05 Ü         |
| Endrin aldehyde           | 8081                 | ⊔g∕iL         | 0.10 U         |
| Endosulfan sulfate        | 8051                 | u <b>g/L</b>  | 0.10 U         |
| p,p'-D0T                  | BOB1                 | ug/L          | 0,50 U         |
| Endrin ketone             | 8081                 | ugiL          | 0.10 U         |
| Methoxychlor              | 8081                 | ифÆ           | 0.10 U         |
| Toxephene                 | 8081                 | DDV.          | 3.0 U          |
| Volatile Organic Compour  | nds by Method 8021   |               |                |
| Date Analyzed             | •                    |               | 9/10/02        |
| MTBE .                    | 8021                 | ⊔g/L          | 5.0 U          |
| Велиеле                   | - 8021               | ∟tg≀L         | Q.9 U          |
| Toluene                   | . 8021               | ⊔ĝ/L          | 1.2 L          |
| Ethylbenzene              | 8021                 | ug/L          | 0.9 U          |
| Total Xylenes             | 8021                 | nğiL          | 2,2 U          |
| Total VOA                 | 8021                 | υgίL          | 0.9 L          |

FDEP CompQAP 970077



SunLabs Project Number

020905.02

Task Environmental Consultants, Inc.

Project Description

Chevron Orlando

September 26, 2002

| •                                     |                                         |               | _            |
|---------------------------------------|-----------------------------------------|---------------|--------------|
| SunLabs Sample Number                 |                                         |               | 14215        |
| Sample Designation                    |                                         |               | CO-MW-5D     |
| •                                     |                                         |               | 9/4/02 15:40 |
| Date Collected                        |                                         | •             | 8/4/02 13/40 |
| Parameters                            | Method                                  | Units         | Results      |
| e e e e e e e e e e e e e e e e e e e | 5 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |               |              |
| Organochiorine Pesticides by Ef       | A Method 8081                           |               |              |
| Date Extracted                        |                                         |               | 9/6/02       |
| Date Analyzed                         |                                         | 4.            | 9/12/02      |
| Surrogate                             | 8081                                    | %             | 73           |
| a-BHC                                 | 6081                                    | ⊌g/L          | 0.04 U       |
| b-BHC                                 | 8081                                    | ນ໘≀L          | 0.05 U       |
| Lindane ,                             | 8081                                    | ρΦιΓ          | 0.05 U       |
| d-BHC                                 | 8081                                    | υ <b>g/L</b>  | 0.D3 U       |
| Heptachlor .                          | 8081                                    | n <b>g/</b> L | 0.04 U       |
| Aldrin -                              | 8081                                    | ug/L          | បំ ¥០.០      |
| 'eptachlor epoxice                    | 8081                                    | υ <b>g/</b> L | 0.05 U       |
| ے-Chlordane                           | 8081                                    | ug/L          | 0.1 U        |
| g-Chlordane .                         | 8081                                    | na/c          | ,0.1 U       |
| Endosulfan I                          | 8081                                    | u <b>g</b> /L | 0.05 U       |
| Dieldrin                              | 8081                                    | ug/L          | 0.03 U       |
| p.p'-DDE                              | 8081                                    | na\#          | 0.10 U       |
| Endda                                 | 8081                                    | աց/Ն          | 0.10 U       |
| Endosulfan I)                         | 8081                                    | ugi⊱          | Ø.1Ď U       |
| p,p'-DDD                              | 8081                                    | ս <b>ց</b> /Ն | ฮ.05 ป       |
| Endrin aldehyde .                     | 8081                                    | ug/L          | 0.10 U       |
| Endosulian sulfate                    | 80B1                                    | пã\г          | D,10 Ü       |
| 70C- <sup>2</sup> 0x <del>0</del>     | B0B1                                    | ug/L          | 0,10 U       |
| Endrin katone                         | 8081                                    | ug/L          | 0.10 U       |
| Methoxychlor                          | 8081                                    | ug/L          | Q.10 U       |
| Toxaphene                             | 8081                                    | ug/L          | 3.0 €        |



SunLabs Project Number

020905.02

Task Environmental Consultants, Inc.

Project Description
Chevron Orlando

September 26, 2002

| SunLabs Sample Number Sample Designation Date Collected Parameters | Method ·       | Units             | 14216<br>CO-MW-5S<br>9/4/02 16:05<br>Results |
|--------------------------------------------------------------------|----------------|-------------------|----------------------------------------------|
| Organochlorine Pesticides by EP                                    | A Method 8081  |                   |                                              |
| Date Extracted                                                     | A meniod obo i |                   | 9/6/02                                       |
| Date Analyzed                                                      | •              |                   | B/12/02                                      |
| Surrogate                                                          | 8081           | 2/0               | 73                                           |
| s-BHC                                                              | 8081           | ugiL              | 0.04 U                                       |
| b-BHC                                                              | 8081           | ug/L              | 0.05 U                                       |
| Lindane                                                            | 8081           | υg/L              | 0.05 ប                                       |
| d-BHC                                                              | BD81           | عالو⊍             | 0.03 U                                       |
| Heptachlor                                                         | 8081           | ug/L              | 0.04 13                                      |
| Aldrin                                                             | 8081           | ηδηΓ<br>-         | 0.04 U                                       |
| eptachior epoxide                                                  | . 8081         | υg/L              | D.Q5 W                                       |
| Chlordane                                                          | 8081           | بالؤد             | . 0.3 U                                      |
| g-Chlordane                                                        | 8081           | ug/L              | 0.1 U                                        |
| Endosulfan )                                                       | 8081           | п <del>а</del> јГ | 0.05 U                                       |
| _ Dielost⊓                                                         | 8981           | ug/L              | 0.07                                         |
| p,p'-DDE                                                           | 8081           | ∪gi⊾              | . 0.10 Ü                                     |
| Endrin                                                             | 8081           | υ <b>g</b> ří.    | 0.10 U                                       |
| Endosulfan ti                                                      | 8081           | ugiL              | 0.10 Ü                                       |
| p.p'-DDD                                                           | 8081           | ug/L              | 0.05 U                                       |
| Endrin aldehyde                                                    | 8081           | u <b>gil.</b>     | 0.1D U                                       |
| Endosulfan sulfate                                                 | 8081           | ug/L              | , 6.10 U                                     |
| TOQ-'q,q                                                           | 8081           | ug/L              | 0.10 U                                       |
| Endrin ketone                                                      | 8081           | ügYL              | 0.10 U                                       |
| Methoxychlor                                                       | ₿ĠB1           | სე∕ს              | 0.10 U                                       |
| Toxaphene , `                                                      | 8081           | n8 <sub>4</sub> r | 3.0 N                                        |
|                                                                    |                |                   |                                              |



SunLabs Project Number

020905.02

Task Environmental Consultants, inc.

Project Description

Chevron Orlando

September 26, 2002

| SunLabs Sample Number Sample Designation Date Collected |               |               | 14217<br>CO-MW-16S<br>9/4/02 16:40 |
|---------------------------------------------------------|---------------|---------------|------------------------------------|
| Parameters                                              | Method        | Units         | Results                            |
| Organochlorine Pesticides by EPA                        | A Method 8081 |               |                                    |
| Date Extracted                                          |               |               | 9/6/02                             |
| Date Analyzed                                           |               | :             | 9/12/02                            |
| Surrogate                                               | 8081          | * %           | 103                                |
| s-BAC                                                   | 8081          | ug/L          | 0.77                               |
| b-BHC                                                   | 8081          | n <b>ô</b> \r | 4.8                                |
| Lindans                                                 | 8081          | uģfL          | 0.51                               |
| d-BHC                                                   | 8061          | ug/£          | 1.3                                |
| Heptachlor                                              | 8081          | υg/L          | 0.4 K                              |
| Aldrin                                                  | 8081          | սել/Լ         | 0.4 K                              |
| eptachlor epoxide                                       | 8081          | υΒ\Γ          | 0.5 K                              |
| Chlordene                                               | 8081          | ยอั\เ         | 1 K                                |
| g-Chlordane                                             | 8081          | υ <b>g</b> /L | 1 K                                |
| Endosulfan I                                            | 8081          | ا/وں          | 0.5 K                              |
| Dleidrift                                               | 8081          | սքչ           | 0.43                               |
| p,p'-DOE                                                | 8081          | սեւլի         | 1 K                                |
| Endrin                                                  | 8081          | пВ\r_         | 1 K                                |
| Endosulfan II                                           | · 8081        | ប្ទូ/∟        | 1 K                                |
| P,P'-DDD                                                | 80B1          | ug/L          | D.5 K                              |
| Endrin aldehyd≐                                         | 8081          | ug/L          | 1 K                                |
| Endosulfan sulfale                                      | 8081          | սք/Լ          | 1 K                                |
| p,p'-DDT                                                | 8081          | ug/L          | 1 K                                |
| Endrin ketone                                           | 8081          | υg/L          | 1 K                                |
| * Methoxychlor                                          | B0B1          | ug∧∟          | 1 K                                |
| Toxaphene                                               | 8081          | υg/L          | 30 K                               |
| Volatile Organic Compounds by I                         | Method 8021   |               |                                    |
| Date Analyzed                                           |               |               | 9/10/02                            |
| MTBE                                                    | 8021          | μg/L          | 5.0 U                              |
| Benzene                                                 | 8021          | ug/L          | 0.9 U                              |
| Toluene                                                 | 8021          | սց/և          | 1.2 U                              |
| Ethylbenzene                                            | 8021          | ug/L          | Q.9 U                              |
| Total Xylenes                                           | B021          | пā\Г          | 2.2 U                              |
| Total VOA                                               | 8021 .        | بالون         | 0.9 N                              |



Suntabs Project Number

020905.02

Task Environmental Consultants,

inc.

Project Description

Chevron Orlando

September 26, 2002

| SunLabs Sample Number<br>Sample Designation<br>Date Collected                                                                                                                                                                                                            |                                                              |                                              | 14218<br>CO-MW-16D<br>9/4/02 17:15                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Parameters                                                                                                                                                                                                                                                               | Method                                                       | Units                                        | Results                                                                                                                                |
| Organochiorine Pasticides by EPA Date Extracted Date Analyzed Surrogate a-BHC b-BHC Lindané d-BHC Heptachior Aldrin Heptachior epoxide a-Chlordane g-Chlordane g-Chlordane Endosulfan { Dieldrin p.p-DDE Endrin Endosulfan II p.p-DDD Endrin aldehyde Endosulfan sulfale | 8081<br>8081<br>8081<br>8081<br>8081<br>8081<br>8081<br>8081 | % ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L    | 9/6/02<br>9/13/02<br>64<br>0.76<br>0.76<br>0.04<br>0.13<br>0.04 U<br>0.05 U<br>0.1 U<br>0.65 U<br>0.10 U<br>0.10 U<br>0.10 U<br>0.10 U |
| p.p'-DDT<br>Endin ketone<br>Methoxychlor<br>Toxsphene                                                                                                                                                                                                                    | 8081<br>8081<br>- 8081<br>8081                               | ug/L<br>ug/L<br>ug/L<br>ug/L                 | 0.10 U<br>0.10 U<br>0.10 U<br>3.0 U                                                                                                    |
| Volatile Organic Compounds by M<br>Date Analyzed<br>MTBE<br>Benzene<br>Toluene<br>Ethylbenzene<br>Total Xylenes<br>Total VOA                                                                                                                                             | 8021<br>8021<br>8021<br>8021<br>8021<br>8021<br>8021         | սց/Ն<br>- սց/Ն<br>- սց/L<br>- սց/L<br>- սց/L | 9/10/02<br>5.0 U<br>2.0<br>1.2 U<br>0.9 U<br>2.2 U<br>2.0                                                                              |



SunLabs
Project Number

020905.02

Task Environmental Consultants, Inc.

Project Description

Chevron Orlando

September 26, 2002

| SunLabs Sample Number<br>Sample Designation<br>Date Collected |               |              | 14219<br>Travel Blank<br>//    |
|---------------------------------------------------------------|---------------|--------------|--------------------------------|
| Parameters                                                    | Method        | Units        | Results                        |
| Volatile Organic Compounds 5                                  | v Method 8021 |              |                                |
| Date Analyzed                                                 |               |              | 9/10/02                        |
| MTBE                                                          | 8021          | ug/L         | 5.0 U                          |
| Benzene •                                                     | 8021          | ug/L         | 0.9 U                          |
| Toluene                                                       | 8021          | ⊓3\ <u>r</u> | 1.2 ∪                          |
| Ethylbenzene                                                  | 8021          | սց∕ե         | <b>0.9</b> U                   |
| Total Xylenes                                                 | 8021          | ug/L         | 2.2 U                          |
| Total VOA                                                     | 8021          | ug/L         | <b>D</b> . <b>B</b> . <i>D</i> |



SunLabs Sample Number

## Report of Laboratory Analysis

14220

9/10/02

ug/L

ugʻL

ug/L

ω<mark>ο</mark>/L

u**g**₹L

ug/L

5.0 U

0.9 U

1.2 U

0.9 U

2.2 U

0.9 U

Suntabs Project Number

020905.02

Task Environmental Consultants,

Project Description Chevron Orlando

September 26, 2002

| Sample Designation  Date Collected |                |                   | CO-FLDBLNK-1<br>9/5/02 08:10 |
|------------------------------------|----------------|-------------------|------------------------------|
| Parameters                         | Method         | Units             | Résults                      |
| Organochlorine Pesticides by E     | PÅ Method 8081 | ,                 |                              |
| Date Extracted                     |                |                   | 9/6/02                       |
| Date Analyzed                      |                |                   | 9/12/02                      |
| Surrogate                          | 8081           | %                 | 69                           |
| z-BHC                              | 8081           | սեչ/բ             | 0.04 U                       |
| 6-B#C                              | 8081           | ∪g∤L              | 0.05 U                       |
| Lindane                            | 8081           | ug/L              | 0.05 U                       |
| d-BRC                              | 8081           | μ <b>ig</b> /L    | 0.03 U                       |
| Heptachlor                         | 8081           | ug/L              | 0.04 น                       |
| Aldrin                             | 8081           | ug/L              | 0.04 U                       |
| teptachlor epoxide                 | 8081           | اروب _            | Q.05 U                       |
| ≟-Chlordane                        | 8081           | عائوں             | a.1 U                        |
| g-Chlordáne                        | 8081           | ــا/وں            | ى 0.1 ئ                      |
| Endosulfan I                       | 8081           | սըմե              | 0.05 Ü                       |
| Dieldrin                           | 8081           | u <b>g</b> /\⊾    | 0.03 U                       |
| p,p'-DDE                           | 8081           | ugňL              | 0.10 U                       |
| Endfin                             | 8081           | ug/L              | 0.10 W                       |
| Endosylfan II                      | 8081           | υgfL              | 0.10 U                       |
| p,p'-DDD                           | 8081           | ug/L              | · 0.05 U                     |
| Endrin aldehyde                    | 8081           | ug/l <sub>e</sub> | 0.10 ป                       |
| Endosulfan spifate                 | 8081           | ug/L              | 0.10 ប                       |
| p,p'-DDT                           | 8081           | ug/L              | ى 10.0                       |
| Endrin kelans                      | 8081           | jug/L             | D.10 U                       |
| Methoxychior                       | 8081           | ug/L              | 0.50 U                       |
| Toxaphene                          | 8081           | با⁄ي ∪            | 3.0 U                        |

8021

8021

6021

8021

8021

8021

FDEP CompOAP 970077

Date Analyzed

MTBE

Benzene

Toluene

Ethylbenžene

Total Xylenes Total VOA



SunLabs Project Number

020905.02

Task Environmental Consultants,

Inc.

Project Description

Chevron Orlando

September 26, 2002

| SunLabs Sample Number            |                |                | 14221        |
|----------------------------------|----------------|----------------|--------------|
| Sample Designation               | •              |                | CO-EQBLNK-2  |
|                                  |                |                | 9/5/02 08:15 |
| Date Collected                   |                |                |              |
| Parameters                       | Method         | Units          | Results      |
| Organochlorine Pesticides by EPA | Method 8081    |                |              |
| Date Extracted                   |                |                | 9/6/02       |
| Date Analyzed                    |                |                | 9/12/02      |
| Surrogate                        | 8061           | %              | 22' MI       |
| a-BHC                            | 8081           | ug/L           | 0.04 Ú       |
| 6-BHC                            | 8091           | υ <b>g</b> /L  | 0,05 U       |
| Lindane                          | 8081           | n@\F           | D.05 U       |
| δ-BHC ·                          | 8581           | n <b>ā</b> √r  | 0.03 U       |
| Heptachlor                       | 8081           | <b>ը</b> გ/∟   | 0.04 년       |
| Aldrin                           | 8081           | ug/L           | 0.04 U       |
| leptachlor epoxide               | BDB1           | با/وu ·        | 0.05 U       |
| Chlordane                        | 8081           | ug/L           | 0.1 U        |
| g-Chlordane                      | 1408           | υg/L           | 0.1 U        |
| Endosulfan i                     | 8081           | υg/L           | 0.05 U       |
| Dieldän                          | 8081           | ug∕L           | 0.03 U       |
| p,p\-DDE                         | 8061           | uġ/L           | 0.10 ك       |
| Endrin                           | 8081           | ug∕L           | 0.16 U       |
| Endosulfan 11                    | 8081           | ug/L           | . 0.10 U     |
| p,p'-⊒DD                         | BD81           | ug/L           | 0.05 U       |
| Endrin aldehyde                  | 8081           | ∪g/L           | 0.10 U       |
| Endosulfan sulfale               | , <b>8</b> 081 | ug/L           | ,0.10 U      |
| p,p'-DDT                         | 8081           | մենս           | 0.10 U       |
| Endrin ketone                    | 8D81           | ugJL           | 0.10 U       |
| Methoxychlor                     | 8081           | ∟الوی          | 0.∮0 U       |
| Toxaphene                        | 8081           | ugiL           | 3.Ò U        |
| Volatile Groanic Compounds by M  | ethod 8021     |                | •            |
| Date Analyzed                    |                |                | 9/10/02      |
| MTBE                             | 8021           | uģ/L           | 5.0 U        |
| Berzene                          | 8021           | ս <u>ը</u> /∟  | 0.9 U        |
| Toluene                          | 8021           | п <b>а</b> уг  | . 1.2 ⊍      |
| Ethylbenzene                     | 8021           | μ <b>g/</b> L  | 0.9 U        |
| Total Xylenes                    | 8021           | ug/L           | 2.2 ປົ       |
| Total VOA                        | 8021           | α <b>č</b> /L` | . 0.9 U      |

FOEP CompOAP \$70077



Endrin aldehyde

Endrin ketone

Methoxychion

Toxaphene

Endosulfan sulfate

p,p'-000

p.p'-DDT

### Report of Laboratory Analysis

0.05 U

0.10 U

0.10 U

0.10 U

0.10 U

0.10 U

3.0 U

SunLabs Project Number

020905.02

Task Environmental Consultants, Inc.

Project Description

Chevron Orlando

September 26, 2002

| SunLabs Sample Number<br>Sample Designation<br>Date Collected |               |               | 14222<br>CO-MW-BS<br>9/5/02 08:20 |
|---------------------------------------------------------------|---------------|---------------|-----------------------------------|
| Parameters                                                    | Method        | Units         | Results                           |
| Organochlorine Pesticides by EP                               | A Method 8081 |               |                                   |
| Date Extracted                                                | •             |               | 9/6/02                            |
| Date Analyzed                                                 |               |               | 9/12/02                           |
| Surrogate ,.                                                  | 8081          | %             | . 66                              |
| a-BHC                                                         | 8081          | ∪g/և          | 0,04 U                            |
| b-BHC                                                         | 6081          | ug/L          | 0.05 U                            |
| Lindane                                                       | 8081          | ug/L          | 0.05 U                            |
| ₫-BHC                                                         | †Ba¢          | ug/L          | 0.D3 U                            |
| Heptáchlor                                                    | 1808          | μ <b>ä</b> /Γ | 0.04 U                            |
| Aldrin                                                        | 8081          | па/ह          | 0.04 U                            |
| aptachlor epoxide                                             | 8081          | υσής          | 0.05 U                            |
| Chlordane                                                     | 8081          | ug/L          | 0.1 U                             |
| g-Chlordane                                                   | 8081          | ug/L          | 0.1 <sub>,</sub> U                |
| Endosulfan I                                                  | B08 f         | u <u>ė</u> /L | 0.05 U                            |
| Dieldrin                                                      | 6ÓB 1         | ն <b>ց/</b> L | 0.03: U                           |
| p.p. DDE                                                      | 8081          | nā/Ļ          | 0.10 U                            |
| Endrin                                                        | 8061          | بأ/ون         | 0.10 U                            |
| Endosulfan II                                                 | BDB 1         | υg/L          | 0.10 U                            |
|                                                               |               |               |                                   |

8081

BÓ81

BÓ81

8081 8081

8081

8081

⊔g/L

uģſL

ug/L

uġ/L

ug/L

ug/L

ug/L



SunLabs Project Number

020905.02

Task Environmental Consultants,

Project Description

Chevron Orlando

September 26, 2002

SunLabs Sample Number Sample Designation Date Collected 14223 CO-MW-8D 9/5/02 08:55

| <b>2</b>                     |                 |               |          |
|------------------------------|-----------------|---------------|----------|
| Parameters                   | Method          | Units         | Results  |
| Organochlorine Pesticides by | EPA Method 8081 |               |          |
| Date Extracted               | •               |               | 9/6/02   |
| Date Analyzed                |                 |               | 9/12/02  |
| Surrogate                    | 8081            | %             | 58       |
| a-BHC                        | 8081            | ug/L          | 0.04 U   |
| 5-BHC                        | 8081            | ug/L          | 0.05 U   |
| Lindane                      | 8081            | ug/£          | 0.05 U·  |
| d-BHC                        | 8081            | Մց/Ն          | D.03 U   |
| Heptachlor                   | 8081            | υg/L          | 0.04 U   |
| A)drin                       | 6081            | uġ/L          | 0,04 U   |
| eptechior epoxide            | 6061            | ug/L          | 0.05 ប   |
| Chilprdane                   | 8081            | սեյ/Լ         | 0.1 U    |
| 'g-Chlordane                 | 8081            | րը∕ւ          | 0.1 U    |
| Endosulfan l                 | 8081            | ug/L          | 0.05 U   |
| Dieldrin                     | 8081            | ug/L          | 0.03 U   |
| p.p'-DDE                     | 8081            | սց/և          | 0.10 ป   |
| Endrin                       | 8081            | ug/L          | 0.10 ប៉  |
| Endosulfan II                | 8081            | ug/L          | D.10 U   |
| p.p'-DDD                     | 8081            | υġ/L          | დ.ბნ U   |
| Endrin aldehyde              | 8D <b>8</b> 1   | ₽ <b>₫</b> /L | 0.10 U   |
| Endosulfan sulfate           | B081            | ug/L          | . 0,10 Մ |
| p,p'-DDT                     | 8081            | ng/r          | 0.10 ป   |
| Endrin ketone                | 8081            | ս <b>ց</b> /և | 0.10 ⊍   |
| Methoxychlor                 | . 8081          | n <b>g</b> /L | 0.10 U   |
| Toxaphene                    | 8081            | ບ <b>ວ</b> ໄL | ម.០.៩    |



SunLabs Project Number

020905.02

Task Environmental Consultants, Inc.

Project Description

Chevron Orlando

September 26, 2002

| SunLabs Sample Number<br>Sample Designation<br>Date Collected                                                                                                                                                                                  | ,                                                                                                                                                                                                                                |                                           | 14224<br>CO-MW-9D<br>9/5/02 09:30                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Parameters                                                                                                                                                                                                                                     | Method                                                                                                                                                                                                                           | Units                                     | Results                                                                                                                                  |
| Organochlorine Pesticides by EPA I Date Extracted Date Analyzed Surrogate e-BHC b-BHC Lindane d-BHC Heptachlor Aldrin eptachlor epoxide -Chlordane g-Chlordane Endosulfan I Dieldrin Endosulfan II p.p'-DDD Endrin aldehyde Endosulfan sulfate | ### BO81  BO81  BO81  BO81  BO81  BO81  BO81  BO81  BO81  BO81  BO81  BO81  BO81  BO81  BO81  BO81  BO81  BO81  BO81  BO81  BO81  BO81  BO81  BO81  BO81  BO81  BO81  BO81  BO81  BO81  BO81  BO81  BO81  BO81  BO81  BO81  BO81 | % ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L | 9/6/02<br>9/12/02<br>60<br>0.08<br>0.39<br>0.61<br>0.04 U<br>0.04 U<br>0.05 U<br>0.1 U<br>0.05 U<br>0.10 U<br>0.10 U<br>0.10 U<br>0.10 U |
| p.p*DDT Endrin ketone Methoxychlor Toxaphene  Vofatile Organic Combounds by Me                                                                                                                                                                 | 8081<br>8081<br>8081<br>8081                                                                                                                                                                                                     | นg/L<br>                                  | 0.10 U<br>0.10 U<br>0.10 U<br>3.0 U                                                                                                      |
| Voiatile Organic Combounds by Will Dale Analyzed MTBE Benzene Toluene Ethyloenzene Total Xylenes Total VOA                                                                                                                                     | 8021<br>8021<br>8021<br>8021<br>8021<br>8021                                                                                                                                                                                     | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L      | 9/10/02<br>5.0 U<br>0.9 U<br>1.2 U<br>0.9 U<br>2.2 U<br>0.9 U                                                                            |

FOEP CompOAP 970077



SunLabs Project Number

020905.02

Task Environmental Consultants,

Inc.

Project Description

Chevron Orlando

September 26, 2002

| SunLabs Sample Number           |               |               | 14225        |
|---------------------------------|---------------|---------------|--------------|
|                                 |               |               | CO-MW-10S    |
| Sample Designation              |               |               | 9/5/02 10:05 |
| Date Collected                  |               |               | 8/3/02 (U:Ua |
| Parameters                      | Method        | Units         | Results      |
| Parameters                      | Medios        | 00            | 110001110    |
| Organochlorine Pesticides by EF | A Method 8081 |               |              |
| Date Extracted                  |               |               | 9/6/02       |
| Date Analyzed                   |               |               | 9/13/02      |
| Surregate                       | 8081          | %             | 83           |
| a-BHC                           | 8081          | nBVF          | 0.59         |
| 5-BHC                           | 8081          | ug/L          | 27           |
| Lindane                         | 8081          | uġ/L          | Ó.28         |
| d-BHC                           | 8081          | ug/b          | 5.9          |
| Heptachlor .                    | <b>8</b> 081  | μg/L          | 0.4 K        |
| Aldrin                          | 8081          | u <u>o</u> /L | 0.4 K        |
| aptachtor epoxida               | 8081          | μ <b>ġ</b> ∫L | 0.5 K        |
| a-Chlordane                     | BOB1          | ug/L          | 1 K          |
| g-Chlordane                     | 8081          | ug/L          | 1 K          |
| Endosulfen l                    | 8081          | սց/և .        | 0.5 K        |
| Dieldrin                        | 8081          | ν <b>g/</b> L | 0.3 K        |
| p,p'-DDE                        | 8081          | ղ8∖Ր          | 1 K          |
| Endrin                          | 8081          | ⊔g/L          | 1 K          |
| Endosulfan II                   | . 8081        | Jg/L          | 1 K          |
| p.p'+000                        | 8081          | սք/Լ          | 0.5 K        |
| Endrin aldehyde                 | . 8081        | րջվ <b>լ</b>  | , 1 K        |
| Endosulfan sulfate              | 8081          | ո⊜₁∟          | 1 %          |
| 7.DD-10.0                       | 8081          | ug∕L          | 1 K          |
| Endrin ketone .                 | 1808          | υg/L          | 0.81         |
| Methoxychior                    | 8081          | ug/L          | 1 K          |
| Toxaphene                       | 8081          | υg/L          | 30 K         |
| Volatile Organic Compounds by   | Method 8021   |               |              |
| Date Analyzed                   |               |               | 9/10/02      |
| MTBE                            | 8021          | ugň           | 5.0 U        |
|                                 | 8021          | ι∕g/L         | 0.9 U        |
| Benżene<br>Takana               | BÒ21          | بالون         | 1,2 U        |
| Talvens                         | 8021          | . nayr        | D.9 U        |
| Ethylbenzene                    | 8021          | ug/L          | 2.2 U        |
| Total Xylenes                   | 8021          | րջ/Լ          | 0.9 U        |
| AOV IsloT                       |               | -0            | <del>-</del> |



SunLabs Project Number

020905.02

Task Environmental Consultants, Inc.

Project Description

Chevron Orlando

September 26, 2002

| SunLabs Sample Number<br>Sample Designation<br>Date Collected                                                                                                                                                                                                        | <b>*</b>                                                     | Units                                        | 14226<br>CO-MW-10D<br>9/5/02 11:25<br>Results                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameters                                                                                                                                                                                                                                                           | Method                                                       | Units                                        | Results                                                                                                                                                  |
| Organochiorine Pesticides by EPA Date Extracted Date Analyzed Surfogate a-BHC b-BHC Lindane d-BHC Heptschlor Aidrin eptschlor epoxideChlordane g-Chlordane g-Chlordane Endosulfan I Dieldrin Endosulfan II p.p'-DDE Endrin Endosulfan sulfate p.p'-DDT Endrin ketone | 8081<br>8081<br>8081<br>8081<br>8081<br>8081<br>8081<br>8081 | % Lughtughtughtughtughtughtughtughtughtught  | 9/6/02<br>9/12/02<br>66<br>0.04 U<br>0.05 U<br>0.05 U<br>0.04 U<br>0.05 U<br>0.1 U<br>0.05 U<br>0.10 U<br>0.10 U<br>0.10 U<br>0.10 U<br>0.10 U<br>0.10 U |
| Methoxychlor                                                                                                                                                                                                                                                         | B081                                                         | ug/L                                         | 0.10 U                                                                                                                                                   |
| Тохарнеле                                                                                                                                                                                                                                                            | 808 9                                                        | ug/L                                         | 3.0 U                                                                                                                                                    |
| Volatile Organic Compounds by No. 20 Date Analyzed MTBE Benzene Toluene Ethylbenzene Total Xylenes Total VCA                                                                                                                                                         | 8021<br>8021<br>8021<br>8021<br>8021<br>8021<br>8021         | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 9/10/02<br>5.0 U<br>0.9 U<br>1.2 U<br>0.9 U<br>2.2 U<br>0.9 U                                                                                            |



SunLabs Project Number

020905.02

Task Environmental Consultants, inc.

Project Description

Chevron Oilando

September 26, 2002

| SunLabs Sample Number<br>Sample Designation<br>Date Collected |                |                     | 14227<br>CO-MW-17<br>9/5/02 12:00 |
|---------------------------------------------------------------|----------------|---------------------|-----------------------------------|
| Parameters                                                    | Method         | Únits               | Results                           |
| Organochlorine Pesticides by E                                | PA Method 8081 |                     |                                   |
| Date Extracted                                                |                |                     | 9/6/02                            |
| Date Analyzed                                                 |                |                     | 9/12/02                           |
| Surrogate                                                     | 8081           | %                   | 84                                |
| a-BHC                                                         | 8081           | ∪Ֆ∕Ն                | 1.6                               |
| b-BHC                                                         | 8081           | <b>نg/L</b>         | 1.3                               |
| Lindane                                                       | 8081           | uġ/L                | 0.37                              |
| d-BHC                                                         | 8081           | n8/r                | 1.9                               |
| Heptachlor                                                    | 8081           | ⊔8/Ր                | 0.4 K                             |
| Sidrin                                                        | 8081           | υ <b>ģ/</b> L       | 0.4 K                             |
| eptachlor epoxida                                             | 8081           | uġ/L                | 0.5 K                             |
| Chlordane                                                     | BO81           | ug/L                | 1 K                               |
| g-Chlordane                                                   | 8081           | ոֆ/բ                | 1 K                               |
| Endosulfan I                                                  | 8081           | ug/L                | 0.5 K                             |
| Dieldrin                                                      | 8081           | uġ/L                | 0,3 K                             |
| p,p'-DDE                                                      | ' BO81         | ug/L                | 1 K                               |
| Endrin                                                        | 8081           | ug/L                | 1 K                               |
| Endosulfan II                                                 | 8081           | υ <u>ģ</u> fL       | 1 K                               |
| p.p'-DDD                                                      | 8081           | ∪ <b>₫</b> /L       | 0.5 K                             |
| Endrin aldehyde                                               | 18081          | սց/և                | 1 K                               |
| Endosulfan sulfate                                            | 8081           | ug/L                | 1 K ·                             |
| p,p'-DDT                                                      | 6081           | ug/L                | 1 K                               |
| Endrin ketone                                                 | 8081           | nB(F                | 1 K                               |
| Methexychlor                                                  | 8081           | ∩ <b>b</b> \r       | 1 K                               |
| Toxaphene                                                     | 6081<br>-      | υ <mark>σ</mark> /L | 30 K                              |
| Volatile Organic Compounds b                                  | v Method 8021  |                     |                                   |
| Date Analyzed                                                 |                |                     | 9/10/02                           |
| MTBE                                                          | \$021          | ug/L                | 5.0 U                             |
| Bénzene                                                       | BD21           | ⊔g∕L                | 0.9 U                             |
| Toluene                                                       | 8021           | ng/Ļ                | 1.2 U                             |
| Ethylbenzene                                                  | 8021           | ug∕i∟               | 0.9 U                             |
| नotal Xylenes                                                 | 8021           | ug/L                | 2.2 V                             |
| Total VOA                                                     | 8921           | ∪g/L                | 0'8 D                             |



SunLabs Project Number

020905.02

Task Environmental Consultants, Inc.

Project Description

Chevron Orlando

September 26, 2002

| SunLabs Sample Number          |                |       | 14228        |
|--------------------------------|----------------|-------|--------------|
| Sample Designation             |                |       | CO-MW-1S     |
| Date Collected                 |                |       | 9/5/02 13:45 |
| Parameters                     | Method         | Units | Results      |
| Organochlorine Pesticides by E | PA Method 8081 |       |              |
| B-4- ₱-444                     |                |       | 0.000        |

| Date Extracted     |                       |               | 9/6/02         |
|--------------------|-----------------------|---------------|----------------|
| Dáte Analyzed      |                       |               | B/12/02        |
| Surrogate          | 8081                  | %             | 63             |
| z-BHC              | 8081                  | úg/L          | 0.13           |
| b-BHC              | 808 i                 | ug/L          | 0.20           |
| Lindane            | 8081                  | ug/L          | 0.05 U         |
| ợ-BHC              | 8081·                 | ug/L          | D.32           |
| Heptachlor         | 8081                  | ug/L          | 0.04° U        |
| Aldrin             | 8081                  | սք/Լ          | 0.0 <b>4</b> U |
| 'eptachlor epoxide | 8081                  | ug/L (        | 0.05 U         |
| Chlordane          | 8081                  | ug/L          | 0.1 U          |
| g-Chlordane        | · 8061                | ug/L          | 0.1 U          |
| Endósulfan I       | <b>6</b> D <b>8</b> 1 | ∪ <b>o</b> /L | . 0.05 U       |
| Dieldrin           | 6081                  | ug/L          | D.03 U         |
| p,p'-DDE           | 8061                  | ug/L          | 0.10 U         |
| Endrin             | 8081                  | υg/L          | 0.10 🗆         |
| Επάοsulfan II      | . 8061                | υg/L          | 0.10 U         |
| p.p'-DDD           | 8081                  | υσ/L          | 0.05 U         |
| Endrin aldehyde    | 8081                  | υ <b>g</b> /L | 0.10 U         |
| Endosulfan sulfate | 8081                  | ug/L          | 0.10 U         |
| p,p'-DDT           | 80B1                  | ug/L          | 0.10 U         |
| Endrin ketone      | . 6061                | ug/L          | 0.10 U         |
| Methoxychlor       | BOB 1                 | υġ/ <b>L</b>  | 0.10 🖯         |
| Toxaphene          | 8081                  | ug/L          | 3.0 U          |

| 1 CABPITOTIO        |              | ***        | Og. C | 0.0     |
|---------------------|--------------|------------|-------|---------|
| Volatile Organic Co | mpounds by M | ethod 8021 |       |         |
| Date Analyzed       |              |            |       | 9/10/02 |
| MTBE -              |              | 8021       | ug/L  | 5.Ď U   |
| Benzene             |              | 8021       | ug/L  | 0.9 U   |
| Toluene             |              | 8021       | ug/L  | 1.2 U   |
| Ethylbenzene        |              | 8021       | ug/L  | 0.9 U - |
| Total Xylenes       |              | 8021       | Ug/L  | 2.2 U   |
| Total VOA           |              | 8021       | ċg/L  | 0.9 U   |
|                     |              |            |       |         |



SuriLabs Project Number

020905.02

Task Environmental Consultants,

Inc.

Project Description

Chevron Orlando

September 26, 2002

| ·                                  |                     |                     |              |
|------------------------------------|---------------------|---------------------|--------------|
| SunLabs Sample Number              |                     |                     | 14229        |
| •                                  |                     |                     | CO-MW-1D     |
| Sample Designation                 |                     |                     | 9/5/02 14:15 |
| Date Collected                     |                     |                     | 8/0/02 14.19 |
| Parameters                         | Method              | Units               | Results      |
| Organochlorine Pesticides by EPA M | <u> Method 8081</u> |                     |              |
| Date Extracted                     |                     |                     | 9/6/02       |
| Date Analyzed                      |                     |                     | . 9/12/02    |
| Surrogate                          | 8081                | %                   | . В1         |
| a-BHC                              | 8081                | n&∖Ľ                | 1.3          |
| 5-BHC                              | 8081                | սց։Լ                | 0.83         |
| Lindane                            | 80B1                | ∪g/L                | 0.5 K        |
| d-BHC                              | 8081                | սց/Լ                | 2.0          |
| Heptachior                         | 8081 -              | սց/Լ                | 0.4 K        |
| Aldrin                             | 8081                | ug/L                | 0.4 K        |
| eptachlor epoxide                  | 8081                | nā/r                | 0.5 K        |
| Chlordane                          | 8081                | ⊔g∕L                | 1 K          |
| g-Chlordatie                       | 8081                | ug/L                | 1 K          |
| Endosulfan I                       | 8081                | υġΛ                 | 0.5 K        |
| Dieldrin                           | 8081                | ಲಡ್ಗ್               | 0.3 K        |
| £00- <sup>ا</sup> م, و             | 6081                | ∪g/L                | 1 K          |
| Endain                             | 8081                | υg/L                | 1 K          |
| Endesulfan II                      | 8081                | ug/L                | 1 K          |
| 0.0d-'a;q                          | 8081                | υ <mark>ρ</mark> /L | 0.5 K        |
| Endrin aldehyde                    | 8081                | υg/L                | 1 <b>K</b>   |
| Endosulfan sulfate                 | 8081                | ug/L                | 1 K          |
| p.p'-DDT                           | 8081                | ug/L                | 1 K          |
| Endrin ketone                      | 8081                | ug/L                | 1 K          |
| Methoxychlor                       | 8081                | ⊔g/L                | 1 K          |
| Toxaphene                          | 8081                | ոցլե                | 30 K         |
| Volatile Organic Compounds by Me   | thod 8021           |                     |              |
| Date Analyzed                      |                     |                     | 9/10/02      |
| MTRE                               | 8021                | ug/L                | 5.0 U        |
| Senzene                            | 8021                | بالوب               | 4,8          |
| Tolueri <del>e</del>               | 8021                | nālr                | 1.2 ⊍        |
| Ethylbenzene                       | 8021                | ug/L                | 41           |
| Total Xylenes                      | 8021                | ពិពិ្រ              | . 86         |
| Total VOA                          | 8021                | ் படு/ட             | . (31.8      |



Suntabs Project Number

020905.02

Task Environmental Consultants, Inc.

Project Description

Chevron Orlando

September 26, 2002

SunLabs Sample Number Sample Designation Date Collected 14230 CO-MW-101D 9/5/02 14:20

|             |                                                              | STORE THIES |
|-------------|--------------------------------------------------------------|-------------|
| Method      | Units                                                        | Results     |
| Method 8081 |                                                              |             |
|             |                                                              | 9/9/02      |
|             |                                                              | B/12/02     |
| 8081        | %                                                            | 89          |
| 8081        | սց/ե                                                         | 1.8         |
| 8081        | ug/L                                                         | 1.0         |
| 8081        | ug/L                                                         | 0.5 K       |
| 8081        | ιί <b>ρ</b> /L                                               | 2.5         |
| 8081        | ug/L                                                         | 0.4 K       |
| BO81        | ug/L                                                         | 0.4 K       |
| 8081        | ηβή                                                          | 0.5 K       |
| 8081        | πāψ                                                          | 1 K         |
| 8081        | ug/L                                                         | ſĸĸ         |
| 8081        | ug/L .                                                       | 0.5 K       |
| 8081        | η <b>θ</b> \Γ                                                | 0.3 K       |
| BOS 1       | u <b>ģ/L</b>                                                 | 1 K         |
| 8081        | רונסט.                                                       | 1 K         |
| 8081        | ոջու                                                         | 1 K         |
| 8081        | ng/L                                                         | 0.5 K       |
| 8081        | ug/L                                                         | 1 K         |
| 8081        | ùg/\.                                                        | 1 K         |
| 6081        | uġ/L                                                         | 1 K         |
| 8081, -     | ψg/L                                                         | 1 K         |
|             | -                                                            | 1 K         |
| 8081        | u <b>g</b> /L                                                | 30 K        |
| thod 8021   |                                                              |             |
|             |                                                              | 9/10/02     |
| B021        | ug/L                                                         | 5.D U       |
| 8021        | . ug/L                                                       | 4.7         |
| 8021        | ∪g/L                                                         | 1.2 U       |
| 8021        | ug/L                                                         | 40          |
| . 8021      | u <b>g</b> /L                                                | 63          |
| 8021        | ug/L                                                         | 127.7       |
|             | 8081<br>8081<br>8081<br>8081<br>8081<br>8081<br>8081<br>8081 | ### BO81    |



SunLabs Project Number

020905.02

Task Environmental Consultants, Inc.

Project Description

Chevron Orlando

| September | 26. | 2002 |
|-----------|-----|------|

|                                  |               |                     | ranna '        |
|----------------------------------|---------------|---------------------|----------------|
| SunLabs Sample Number            |               |                     | 14231          |
| Sample Designation               |               |                     | CO-MW-2S       |
| Date Collected                   |               |                     | 9/5/02 15:00   |
| Parameters                       | Method        | Units               | Results        |
| Organochlorine Pesticides by EPA | A Method 8081 |                     |                |
| Date Extracted                   |               |                     | 9/9/02         |
| Data Analyzed                    |               |                     | 9/12/02        |
| Surrogate                        | 8081          | %                   | 58             |
| a-BHC                            | 8081          | սց/Լ                | 0.0 <b>4</b> U |
| 5-BHC                            | 8081          | ug/L                | Q.Q5 U         |
| Lindane                          | 8081          | ug/L                | .Q.Q5 U        |
| ¢-BHC                            | 8081          | ug/L                | 0.03 U         |
| Heptachlor                       | 8081          | ug/L                | 0.04 U         |
| Aldrin                           | 8081          | ug/L                | 0.D4 U         |
| aptachlor apoxida                | 8081          | υgΛĹ                | 0. <b>05</b> U |
| - Jhlordane                      | 8081          | υg/L                | Ó,5 U          |
| g-Chiprdane                      | 8081          | ∪g/L                | 0.4 6          |
| Endosulfen I                     | 6ÖB1          | ∪ <b>ը</b> /Ն       | 0.05 U         |
| Dieldrin                         | 8081          | OBY                 | 0.03 U         |
| p,p'-DDE                         | BDB 1         | ن⊵الے               | 0.10 U         |
| Endrin                           | * BDB1        | úg/L                | 0.10 U         |
| Endosulian II                    | 6061          | υ <mark>φ</mark> /L | 0.10 U         |
| p.p'-DDD                         | 8081          | ՝ ս <u>զ</u> /և     | 6.05 U         |
| Endrin aldehyde                  | 8081          | υg/L                | 0.10 U         |
| Endosulfan sulfate               | 8081          | υg/L                | 0.10 U         |
| p,p'-DDT                         | 8081          | ug/L                | 0.10 U         |
| Endrin ketone                    | 8081          | υς/L                | 0.10 U         |
| Methoxychlor                     | 8Ö81          | up/L                | ดังรอ ย        |
| Toxaphene                        | 8081          | ug/L                | 3.0 บ          |



3.0 U

SunLabs Project Number

020905.02

Task Environmental Consultánts,

Inc.

Project Description

Chevron Orlando

September 26, 2002

| Sample Designation  Date Collected |                | ,            | CO-MW-2D<br>9/5/02 15:25 |
|------------------------------------|----------------|--------------|--------------------------|
| Parameters                         | Method         | Units        | Results                  |
| Organochlorine Pesticides by E     | PA Method 8081 |              |                          |
| Date Extracted                     |                |              | 9/9/02                   |
| Date Analyzed                      | •              |              | 9/12/02                  |
| Sumogate                           | <b>₿</b> 081 ⋅ | %            | 39                       |
| a-BHC                              | 8061           | ug/L         | Ď,04 U                   |
| b-BHC                              | 8081           | ∪g/L         | 0.32                     |
| Lindane                            | 8081           | ug/L         | ๑.๐5 ป                   |
| 6-BHC                              | 8081           | ug/L         | 0.03 <sub>.</sub> U      |
| Heptachlor                         | . 8081         | ug/L         | 0. <b>04 U</b>           |
| 4 ರನೆಗ                             | 8081           | ug/Ł         | 0:04 U                   |
| aptachlor epoxide                  | 8081           | <b></b> ԵՑ/Լ | 0.05 U                   |
| -Chlordane                         | 8081           | ug/L         | 0.1 U                    |
| 6-Chlordane                        | 8081           | ug/L         | ' 0.1 U                  |
| Endosulfan i                       | 8081           | <u>и</u> ∳/L | 0.05 U                   |
| Dieldrin                           | 6081           | ug/L         | 0.03 U                   |
| p.p'-DDÉ                           | \$0 <b>8</b> 1 | სე/Ĺ         | 0.10 U                   |
| Endrin :                           | 8081           | មនូ/L        | 0.10 U                   |
| Endosulfan II                      | 8081           | ug/L         | 0,1Q U                   |
| p,p'-DOD .                         | 50 <b>B1</b>   | ug/L         | D.05 U                   |
| Endrin aldehyde                    | B0 <b>81</b>   | ug/L         | 0.10 U                   |
| Endosolfan sulfate                 | 8081           | υg/L         | 0.10 U                   |
| p.p'-DDT                           | · 8081         | ug/L         | 0.10 U                   |
| Endrin ketone                      | 8081           | ₽₽Æ          | 0.10 U                   |
| Methoxychior                       | 8081           | · ug/L       | 0.10 U                   |
| rendering of their                 | 8084           | 1145         | 3 (7.11                  |

FDEP CompOAP 978077

ug/L

80B1

Toxaphene



SunLabs Project Number

020905.02

Task Environmental Consultants,

inc.

Project Description

Chevron Orlando

September 26, 2002

| SunLabs Sample Number<br>Sample Designation<br>Date Collected                                                                                                                                                                                                                                  |                                                              |                                                | 14233<br>CO-MW-3S<br>9/5/02 18:05                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameters                                                                                                                                                                                                                                                                                     | Method                                                       | Units                                          | Results                                                                                                                                                                                                                    |
| Organochiorine Pasticides by EP. Date Extracted Date Analyzed Surrogate a-BHC b-BHC Lindane d-BHC Heptachlor Aldrin *ptachlor epoxideChiordane g-Chiordane Endosulfan I Dieldrin p.p'-DDE Endrin Endosulfan II p.p'-DDD Endrin aldehyde Endosulfan sulfate p.p'-DDT Endrin ketone Methoxychlor | 8081<br>8081<br>8081<br>8081<br>8081<br>8081<br>8081<br>8081 | *** UBALLUGULUGULUGULUGULUGULUGULUGULUGULUGULU | 9/9/02<br>9/12/02<br>64<br>0,21<br>0,05 U<br>0,16<br>0,04 U<br>0,05 U<br>0,1 U<br>0,05 U<br>0,10 U<br>0,10 U<br>0,10 U<br>0,10 U<br>0,10 U<br>0,10 U<br>0,10 U<br>0,10 U<br>0,10 U<br>0,10 U<br>0,10 U<br>0,10 U<br>0,10 U |
| Taxaphene  Volatile Organic Compounds by                                                                                                                                                                                                                                                       |                                                              |                                                |                                                                                                                                                                                                                            |
| Date Analyzed MTBE Benzene Toluene Ethylbenzene Total Xylenes Total VOA                                                                                                                                                                                                                        | 8021<br>8021<br>8021<br>8021<br>8021<br>8021                 | ո8ւ/<br>ո8,/r<br>ո8,/r<br>ո8,/r                | 9/10/02<br>5.0 U<br>5.3<br>1.2 U<br>5.7<br>11                                                                                                                                                                              |



SunLatis Project Number

020905.02

Task Environmental Consultants,

lnc.

Project Description

Chevron Orlando

September 26, 2002

| SunLabs Sample Number<br>Sample Designation<br>Date Collected                                                                                                                                                                                                       |                                                              |                                                                   | 14234<br>CO-MW-103S<br>9/5/02 16:10                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Parameters                                                                                                                                                                                                                                                          | Method                                                       | Units                                                             | Results                                                                                                     |
| Organochlorine Pesticides by EPA M Date Extracted Date Analyzed Surrogate a-BHC b-BHC Lindane d-BHC Heptachlor Aldrin hytachlor apoxide Chlordane g-Chlordane Endosulfan I Dieldrin p.p-DDE Endrin Endosulfan II p.p-DDD Endrin aidehyde Endosulfan sulfate p.p-DDT | 8081<br>8081<br>8081<br>8081<br>8081<br>8081<br>8081<br>8081 | %<br>Ug/L<br>Ug/L<br>Ug/L<br>Ug/L<br>Ug/L<br>Ug/L<br>Ug/L<br>Ug/L | 9/9/02 8/12/02 46 0.15 0.19 0.05 U 0.13 0.04 U 0.06 U 0.1 U 0.1 U 0.05 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U |
| Endrin ketone<br>Methoxychtor<br>Toxaphene                                                                                                                                                                                                                          | 8081<br>8081<br>8081                                         | n <b>a</b> /r<br>na/r                                             | 0.10 U<br>0.10 U<br>3.0 U                                                                                   |
| Volatile Organic Compounds by Meti<br>Date Analyzed<br>MTBE<br>Benzene<br>Toluene<br>Ethylbenzene<br>Total Xylenes<br>Total VOA                                                                                                                                     | 8021<br>8021<br>8021<br>8021<br>8021<br>8021<br>8021<br>8021 | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                              | . 9/10/02<br>5.0 U<br>5.7<br>1.2 U<br>4.4<br>9.5<br>, 19.6                                                  |



SunLabs Project Number

020905.02

Task Environmental Consultants, Inc.

Project Description

Chevron Orlando

September 26, 2002

| SunLabs Sample Number<br>Sample Designation<br>Date Collected | •      |       | 14235<br>Travel Blank-2<br>/ / |
|---------------------------------------------------------------|--------|-------|--------------------------------|
| Parameters                                                    | Method | Units | Results                        |

| Benzene   8021   ug/L   0.8 U     Toluene   8021   ug/L   1.2 U     Ethylbenzene   8021   ug/L   0.9 U     Total Xylenes   8021   ug/L   2.2 U                                                                                                                                                  | , granton.            | '           |                   |      |         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------|-------------------|------|---------|
| MTBE         8021         ug/L         5.0 U           Benzene         8021         ug/L         0.8 U           Toluene         8021         ug/L         1.2 U           Ethylbenzene         8021         ug/L         0.9 U           Total Xylenes         8021         ug/L         2.2 U | <u>Volatile Organ</u> | ic Compound | ds by Method 8021 |      |         |
| MTBE         8021         ug/L         5.0 U           Benzene         8021         ug/L         0.9 U           Toluene         8021         ug/L         1.2 U           Ethylbenzene         8021         ug/L         0.9 U           Tolai Xylenes         8021         ug/L         2.2 U | Date Analyzed         |             |                   |      | 8/10/02 |
| Toluene                                                                                                                                                                                                                                                                                         | -                     |             | , 8021            | ug/L | 5.0 U   |
| Toluene         8021         ug/L         1.2 U           Ethylbenzene         8021         ug/L         0.9 U           Total Xylenes         8021         ug/L         2.2 U                                                                                                                  | Benzené               |             | 8021              | ug/L | Q.B U   |
| Total Xylenes 8021 ug/L 2.2 U                                                                                                                                                                                                                                                                   |                       |             | B021              | ug/L | · 1.2 U |
| LOTHE A VIOLES                                                                                                                                                                                                                                                                                  | Ethylbenzene          |             | 8021              | ug/L | 0.9 U   |
| Total VOA 8021 ug/L 0.9 U                                                                                                                                                                                                                                                                       | Total Xylenes         |             | 8021              | υg/L | 2.2 U   |
|                                                                                                                                                                                                                                                                                                 | •                     |             | 8021              | ⊔g/L | 0.9 U   |



SunLebs Project Number

020905.02

Task Environmental Consultants, inc.

Project Description

Chevron Orlando

September 26, 2002

SunLabs Sample Number Sample Designation Date Collected 14236 CO-EQBENK-3. 9/6/02 09:35

| Date Collected              |                   |                | 010.02 80.00 |
|-----------------------------|-------------------|----------------|--------------|
| Parameters                  | Method            | Units          | Results      |
| Organochlorine Pesticides b | v EPA Method 8081 |                |              |
| Date Extracted              | <del>,</del>      |                | 9/9/02       |
| Date Analyzed               |                   |                | 9/12/02      |
| Surrogate                   | BDB1              | %              | 94           |
| a-BHC                       | 8081              | na/£           | 0.04 Lt      |
| b-BHC                       | 8081              | ug/L           | 0.05 U       |
| Lindane                     | 8081              | ug/L           | 0.05 U       |
| d-BHC                       | 8081              | ∪g/L           | 0.03 U       |
| Heptachlor                  | 8081              | ug/L           | 0.04 U       |
| Aldrin                      | 8081              | ስ <b>ቅ</b> ኒታ  | 0.04 U       |
| eotachior epoxida           | 8081              | ug/L           | 0.05 U       |
| Chlordane                   | 8081              | υg/L           | 0.1 U        |
| p-Chlordane                 | 8081              | ug/L           | 0.1 U        |
| Endosulfan I                | 8081              | n∂∖/r          | 0.05 U       |
| Dieldrin                    | 8081              | ug/L           | 0,03 U       |
| p,p'-DD€                    | 8081              | սց/ն           | 0.10 U       |
| Endrin                      | ap81              | ∪g/L           | 0.10 U       |
| Endosulfan II               | 8081              | ug/L           | 0.10 U       |
| p,p'-ODD                    | 8081              | սք√L           | 0.05 U       |
| Endrin aldehydə             | 8081              | عائون          | 0,10 U       |
| Endosulfan sulfate          | 8081              | u <b>₫</b> (Ľ  | 0.1D U       |
| P.P-20T                     | 6081              | nāvr           | D.1D U       |
| Endőn ketone                | 8081              | ug/L           | 0.10 U       |
| Methoxychlar                | 8081              | սց/Լ           | · 0.10 U     |
| Toxaphene                   | 8081              | ug/L           | 3.0 U        |
| Volatile Organic Compound   | s by Method 8021  |                |              |
| Date Analyzed               |                   |                | 9/10/02      |
| MTBE                        | 8021              | n84£           | 5.0 U        |
| Benzene                     | . 8021            | ưg/∟           | 0.9 U        |
| Toluéne                     | 8021              | nā\r           | 1.2 U        |
| Ethylpenzene                | 8021              | ug/L           | U e.0        |
| Total Xylenes               | 8021              | υ <u>ς</u> νίL | 2.2 U        |
| · Total VOA                 | BD21              | · ug/L         | ₫.9 U        |
|                             |                   |                |              |



SunLabs Project Number

020905.02

Task Environmental Consultants,

Inc.

Project Description

Chevron Orlando

September 26, 2002

| SunLabs Sample Number<br>Sample Designation<br>Date Collected |               |                     | 14237<br>CO-MW-3D<br>9/6/02 09:40 |
|---------------------------------------------------------------|---------------|---------------------|-----------------------------------|
| Parameters                                                    | Method        | Units               | Results                           |
| Organochiorine Pesticides by EPA                              | Method 8081   |                     |                                   |
| Date Extracted                                                |               |                     | 9/9/02                            |
| Date Analyzed                                                 |               |                     | 9/12/02                           |
| Surrogate                                                     | 8081          | %                   | 75                                |
| e-BHC                                                         | 8081          | ria (L              | 0.04 U                            |
| b-BHC                                                         | 8081          | ug/L                | 0.05                              |
| Lindane                                                       | 8081          | ug/L                | . D.05 U                          |
| d-BHC                                                         | BOB1          | ug/L                | 0.03 U                            |
| Heptachior                                                    | 8081          | ug/L                | 0.04 ป                            |
| Aldrin                                                        | 8081          | ug/£                | 0.04 ¥                            |
| aptachlor epoxide                                             | 8081          | սց/չ                | 0.05 び                            |
| Chlordane                                                     | 8081          | ug/L                | 0.1 U                             |
| g-Chlordane                                                   | 8081          | սց/Ն                | 0.1 U                             |
| Endosulfan I                                                  | 8081          | ug/L                | 0.D5 U                            |
| Dieldrin                                                      | 8081          | սց/և                | 0.03 U                            |
| p <sub>i</sub> p'-DDE                                         | 8D81          | uġ/L                | 0.1D U                            |
| Endrin                                                        | 8081          | υg/L                | 0.10 U                            |
| Endosulfan II                                                 | 8D81          | υg/L                | 0.10 U                            |
| p,p'-DDD                                                      | 8081          | υ <mark>ợ</mark> /L | 0,05 U                            |
| Endrin aldehyde                                               | 80 <b>8</b> 1 | υg/L                | Ð,1Ģ U                            |
| Endosulfan sulfate                                            | 8081          | υg/L                | D.10 U                            |
| p,p'-DDT .                                                    | 8081          | ug/L                | 0.10 U                            |
| Endrin ketone                                                 | 8091          | υ <b>g</b> /L       | 0.1Ó U                            |
| Methoxychlor                                                  | 8081          | υ <b>ը</b> /L       | U 01.0                            |
| Toxaphene                                                     | 8081          | ug/L                | 3.0 U                             |
| Volatile Organic Compounds by M                               | ethod 8021    |                     |                                   |
| Date Analyzed                                                 |               |                     | 9/10/02                           |
| мтва .                                                        | 8021          | ug/L                | 5.0 U                             |
| Benzene                                                       | BO21          | սց/Լ                | 0.9 U                             |
| Toluene                                                       | 8021          | n <b>ā</b> /Ľ       | 1,2 ∪                             |
| Ethylbenzene                                                  | 8021          | пâţŗ                | 0.9 U                             |
| Total Xylenes                                                 | 8021          | ug/L                | 2.2 U                             |
| TotalVDA                                                      | 8021          | ugit                | 0.9 U                             |



SunLabs Project Number

020905.02

Task Environmental Consultants,

Project Description

Chevron Orlando

September 26, 2002.

| SunLabs Sample Number<br>Sample Designation<br>Date Collected                                                                                                                                                                                                                                                   |                                                              |                                                                   | 14238<br>CO-MW-48<br>9/6/02 10:10                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Parameters                                                                                                                                                                                                                                                                                                      | Method                                                       | Units                                                             | Results                                                                                                           |
| Organochlorine Pesticides by EPA To Date Extracted Date Analyzed Surrogate a-BHC b-BHC Lindane d-BHC Heptschlor Aldrin 'aptachlor epoxide Chlordane g-Chlordane g-Chlordane Endosulfan I Dielidin p.p'-DDE Endrin Endosulfan II p.p'-DDD Endrin aldehyde Endosulfan sulfate p.p'-DDT Endrin ketone Methoxychlor | 8081<br>8081<br>8081<br>8081<br>8081<br>8081<br>8081<br>8081 | %<br>Ug/L<br>Ug/L<br>Ug/L<br>Ug/L<br>Ug/L<br>Ug/L<br>Ug/L<br>Ug/L | 9/9/02<br>9/12/02<br>113<br>1.9<br>5.2<br>0.5 K<br>3.2<br>0.4 K<br>0.5 K<br>0.5 K<br>1 K<br>0.5 K<br>1 K<br>0.5 K |
| Taxaphene                                                                                                                                                                                                                                                                                                       | 8081                                                         | uģ/L                                                              | 30 K                                                                                                              |
| Volatile Organic Compounds by Me                                                                                                                                                                                                                                                                                | thod 8021                                                    |                                                                   |                                                                                                                   |
| Date Analyzed .                                                                                                                                                                                                                                                                                                 |                                                              |                                                                   | 9/10/02                                                                                                           |
| MTBE                                                                                                                                                                                                                                                                                                            | 8021                                                         | υg/L                                                              | 5.0 U                                                                                                             |
| Benzene ·                                                                                                                                                                                                                                                                                                       | 8021                                                         | υg/L                                                              | 0.9 U                                                                                                             |
| Toluene                                                                                                                                                                                                                                                                                                         | 8021                                                         | υg/L                                                              | 1.2 U                                                                                                             |
| Ethylbenzene                                                                                                                                                                                                                                                                                                    | 8021                                                         | υ <b>g</b> /L                                                     | D.B U                                                                                                             |
| Total Xylenes                                                                                                                                                                                                                                                                                                   | 8021                                                         | υδίΓ                                                              | 2.2 U                                                                                                             |
| Total VOA                                                                                                                                                                                                                                                                                                       | 8021                                                         | Тфл                                                               | 0.\$ U                                                                                                            |



SunLabs Project Number

020905.02

Task Environmental Consultants, Inc. \*\*

Project Description
Chevron Orlando

September 26, 2002

| SunLabs Sample Number |
|-----------------------|
| Sample Designation    |
| Date Collected        |

14239 CO-MW-1045 9/6/02 10:15

| Date Collected                   |                     |               | 9/6/02 10:15  |
|----------------------------------|---------------------|---------------|---------------|
| Parameters                       | Měthod              | Units         | Results       |
| Organochiorine Pasticides by EPA | <u> Mathöd 8081</u> |               |               |
| Date Extracted .                 |                     |               | 9/9/02        |
| Date Analyzed                    | •                   |               | 9/13/02       |
| Surrogate                        | 8081                | %             | 106           |
| a-BHC                            | 8081                | n <b>a</b> /L | 2.4           |
| b-BHC                            | 8081                | ju⊠\ŕ         | 6.5           |
| Lindape                          | 8081                | ug/L          | 0.5 K         |
| d-9HC                            | 8081                | n8/F          | 3.8           |
| Heptachlor                       | 8081                | ug/L          | 0.4 K         |
| Aldrin                           | 8081                | пŌ\Jr         | 0.4 K         |
| aptachlor epoxide                | 8081                | ս <u>գ</u> /Ն | 0.5 K         |
| :hlordane                        | 8081                | ւց/ւ          | 1 K           |
| ~ g-Chlordane                    | 8081                | ո8/չ          | 1 K           |
| Endosulfan I                     | 8081                | սֆ/⊾          | 0.5 K         |
| Dieldrin                         | 8081                | սք/Ն          | 0.3 K         |
| p,p'-DDE                         | 8081                | ug/L          | 1 K           |
| Endrin                           | 8081                | n@/L          | 1 K           |
| Endosulfan II                    | 8081                | n8/F          | 1 K           |
| O00-'و,م                         | 8081                | υg/L          | 0.5 K         |
| Engrin aldehyde                  | 8081                | uġ/L          | 1 K           |
| Endosulfan sulfate               | 8081 <sub>.</sub>   | υg/L          | . 1 K         |
| p,p4DDT                          | 8081                | ug/L          | 1 K           |
| Endrin ketone                    | 8081                | υg/L          | 1.6           |
| Methoxychlor                     | 8081                | ug/L          | 1 K           |
| Toxaphene                        | 6081                | υg/L          | 30 K          |
| Volatile Organic Compounds by Me | thod 8021           |               |               |
| Date Analyzed                    |                     |               | 9/10/02       |
| MTBE                             | 8021                | υ <b>g</b> /L | , 5.0 U       |
| Benzene                          | 8021                | ug/L          | 0.9 U         |
| Toluene                          | 8021                | L/وں          | 1.2 U         |
| Ethylbenzene                     | 8021                | ⊔g/L          | 0.9 U         |
| Total Xylenes                    | 8021                | ug/L          | <b>2</b> .2 U |
| Total VOA                        | 8021                | υg/L          | 0.9 U         |

FDEP CompQAP 970077

Page 27 of 29 | Page 9/3991.9401 | Erink 9/9/09/48/20000000



SunLabs Project Number

020905.02

Task Environmental Consultants, inc.

Project Description

Chevron Orlando

September 26, 2002

| SunLabs Sample Number Sample Designation |                |                | 14240<br>CO-MW-4D |             |
|------------------------------------------|----------------|----------------|-------------------|-------------|
| -                                        |                |                |                   |             |
| Date Collected                           |                |                | 9/6/02 10:50      |             |
| Paraméters                               | Method         | Units          | Results           |             |
| Organochlorine Pesticides by E           | PA Method 8081 | •              |                   |             |
| Date Extracted                           |                |                | 9/9/02            |             |
| Date Analyzed                            |                |                | 9/13/02           | <b>**</b> · |
| Surrogate                                | 8081           | %              | 70                |             |
| a-BHC                                    | 8081           | ug/L           | 2.2               |             |
| b-BHC                                    | 8081           | υg/L           | 2.2               |             |
| Lindane ·                                | 8081           | ⊌g/L           | 0.5 K             |             |
| d-BHC ,                                  | 8081           | ug/L.          | 4.5               |             |
| Heptachlor                               | 8081           | υg/L           | 0.4 K             |             |
| Aldrin                                   | 8081           | ug/L           | 0.4 K             |             |
| 'aptachlor apoxida                       | 6081           | ug/L           | 1,7               |             |
| Chlordane                                | 8081           | υg/L           | 1 K               | ,           |
| g-Chlordane                              | 8081           | սեչ/Ն          | 1 K               | ,           |
| Endosulfan I                             | 8081           | ug/L           | 0.5 K             |             |
| Dieldrin                                 | 8081           | սը/Ն           | 0.3 K             |             |
| p.p'-DDE                                 | <b>\$</b> 0\$1 | Ug/L           | 1 K               |             |
| Endrin                                   | 8061           | ug/(           | 1 K               |             |
| Endosulfan 15                            | 8081           | ug/L           | 5 K               |             |
| p,p'-DDD                                 | 8081           | ug/L           | Q.5 K             |             |
| Endrin eldéhyde                          | . 8081         | υgi/L          | 1 K               |             |
| Endosulfari sulfate                      | 8081           | ∪g/(,          | 1 K               | •           |
| p,p'-DDT -                               | 8081           | υ <b>g</b> /L: | 1 K               |             |
| Endrîn ketonê                            | 8081           | ⊔g/L           | 1 K               |             |
| Methoxychior                             | 8081           | ug/L           | 1 K.              |             |
| Toxaphene                                | 8081           | րը/լ           | 30 K              |             |

FDEP CompQAP 970077

8021

8021

8021

8021

8021

8021

Date Analyzed

MTBE

Benzene

Toluene

Ethylbenzene

Total Xylenes

Total VOA

9/10/02

25 K

вΚ

14

120

330

464

ug/L

ug/L

ug/L

υġ/L

ug/L

ug/L



SunLabs Project Number

020905.02

Task Environmental Consultants, Inc.

Project Description

Chevron Orlando

September 26, 2002

#### Footnotes

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

MB Method Blank
MI Matrix Interference
MS Matrix Spike

MSD Matrix Spike Duplicata RPD Relative Percent Difference